The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] WINNER(17hit)

1-17hit
  • Scalable Hardware Winner-Take-All Neural Network with DPLL

    Masaki AZUMA  Hiroomi HIKAWA  

     
    PAPER-Biocybernetics, Neurocomputing

      Pubricized:
    2015/07/21
      Vol:
    E98-D No:10
      Page(s):
    1838-1846

    Neural networks are widely used in various fields due to their superior learning abilities. This paper proposes a hardware winner-take-all neural network (WTANN) that employs a new winner-take-all (WTA) circuit with phase-modulated pulse signals and digital phase-locked loops (DPLLs). The system uses DPLL as a computing element, so all input values are expressed by phases of rectangular signals. The proposed WTA circuit employs a simple winner search circuit. The proposed WTANN architecture is described by very high speed integrated circuit (VHSIC) hardware description language (VHDL), and its feasibility was tested and verified through simulations and experiments. Conventional WTA takes a global winner search approach, in which vector distances are collected from all neurons and compared. In contrast, the WTA in the proposed system is carried out locally by a distributed winner search circuit among neurons. Therefore, no global communication channels with a wide bandwidth between the winner search module and each neuron are required. Furthermore, the proposed WTANN can easily extend the system scale, merely by increasing the number of neurons. The circuit size and speed were then evaluated by applying the VHDL description to a logic synthesis tool and experiments using a field programmable gate array (FPGA). Vector classifications with WTANN using two kinds of data sets, Iris and Wine, were carried out in VHDL simulations. The results revealed that the proposed WTANN achieved valid learning.

  • Effects of Channel Features on Parameters of Genetic Algorithm for MIMO Detection

    Kazi OBAIDULLAH  Constantin SIRITEANU  Shingo YOSHIZAWA  Yoshikazu MIYANAGA  

     
    PAPER-Digital Signal Processing

      Vol:
    E96-A No:10
      Page(s):
    1984-1992

    Genetic algorithm (GA) is now an important tool in the field of wireless communications. For multiple-input/multiple-output (MIMO) wireless communications system employing spatial multiplexing transmission, we evaluate the effects of GA parameters value on channel parameters in fading channels. We assume transmit-correlated Rayleigh and Rician fading with realistic Laplacian power azimuth spectrum. Azimuth spread (AS) and Rician K-factor are selected according to the measurement-based WINNER II channel model for several scenarios. Herein we have shown the effects of GA parameters and channel parameters in different WINNER II scenarios (i.e., AS and K values) and rank of the deterministic components. We employ meta GA that suitably selects the population (P), generation (G) and mutation probability (pm) for the inner GA. Then we show the cumulative distribution function (CDF) obtain experimentally for the condition number C of the channel matrix H. It is found that, GA parameters depend on the channel parameters, i.e., GA parameters are the functions of the channel parameters. It is also found that for the poorer channel conditions smaller GA parameter values are required for MIMO detection. This approach will help to achieve maximum performance in practical condition for the lower numerical complexity.

  • A Current-Mirror Winner-Take-All Sense Amplifier for Low Voltage SRAMs

    Song JIA  Heqing XU  Fengfeng WU  Yuan WANG  

     
    BRIEF PAPER-Integrated Electronics

      Vol:
    E96-C No:9
      Page(s):
    1205-1207

    We propose a current mode sense amplifier that uses a current-mirror to increase the bitline sensing current, which dominates the sensing speed. A comparison of the sensing delay shows that the proposed sense amplifier can provide about 12.6∼15.4% improvement depending on different bitline loads in sensing speed over original WTA scheme.

  • An Offset Cancelled Winner-Take-All Circuit

    Dongsoo KIM  Jimin CHEON  Gunhee HAN  

     
    PAPER

      Vol:
    E92-A No:2
      Page(s):
    430-435

    The performance of an analog winner-take-all (WTA) circuit is affected by the corner error and the offset error. Despite the fact that the corner error can be reduced with large transconductance of the transistor, the offset error caused by device mismatch has not been completely studied. This paper presents the complete offset error analysis, and proposes low offset design guidelines and an offset cancellation scheme. The experimental results show good agreement with the theoretical analysis and the drastic improvement of the offset error.

  • Design of Analog Current-Mode Loser-Take-All Circuit

    Mohsen ASLONI  Abdollah KHOEI  Khayrollah HADIDI  

     
    LETTER

      Vol:
    E89-C No:6
      Page(s):
    819-822

    A CMOS circuit is proposed which takes multiple analog input currents and extracts minimum input current at the output. It is very fast and requires no subtraction from the constant current source. It exhibits O(N) complexity and uses only 4N MOS transistors where N is the number of system inputs. This circuit consumes very little power and very small area. The substrate bias affects the threshold voltage of transistors and improves performance of the structure.

  • A Generic Solver Based on Functional Parallelism for Solving Combinatorial Optimization Problems

    Shigeaki TAGASHIRA  Masaya MITO  Satoshi FUJITA  

     
    PAPER-Distributed Cooperation and Agents

      Vol:
    E89-D No:6
      Page(s):
    1940-1947

    This paper proposes a new class of parallel branch-and-bound (B&B) schemes. The main idea of the scheme is to focus on the functional parallelism instead of conventional data parallelism, and to support such a heterogeneous and irregular parallelism by using a collection of autonomous agents distributed over the network. After examining several implementation issues, we describe a detail of the prototype system implemented over eight PC's connected by a network. The result of experiments conducted over the prototype system indicates that the proposed parallel processing scheme significantly improves the performance of the underlying B&B scheme by adaptively switching exploring policies adopted by each agent participating to the problem solving.

  • Fast Learning Algorithms for Self-Organizing Map Employing Rough Comparison WTA and its Digital Hardware Implementation

    Hakaru TAMUKOH  Keiichi HORIO  Takeshi YAMAKAWA  

     
    PAPER

      Vol:
    E87-C No:11
      Page(s):
    1787-1794

    This paper describes a new fast learning algorithm for Self-Organizing Map employing a "rough comparison winner-take-all" and its digital hardware architecture. In rough comparison winner-take-all algorithm, the winner unit is roughly and strictly assigned in early and later learning stage, respectively. It realizes both of high accuracy and fast learning. The digital hardware of the self-organizing map with proposed WTA algorithm is implemented using FPGA. Experimental results show that the designed hardware is superior to other hardware with respect to calculation speed.

  • The WINNER Project: Research for New Radio Interfaces for Better Mobile Services

    Emilio Mino DIAZ  Pierre GELPI  Jorn von HAFEN  Ludwig HIEBINGER  Tommi JAMSA  Goran MALMGREN  Werner MOHR  Pekka OJANEN  Daniel Chr. SCHULTZ  

     
    INVITED PAPER

      Vol:
    E87-A No:10
      Page(s):
    2592-2598

    Europe has initiated research activity to analyse and prepare the floor for mobile communication beyond 3G. Very recently, around the beginning of 2004, the European commission started together with the main partners in the relevant industry special projects to realize this plan. The key objective of the WINNER (Wireless World Initiative New Radio) project is to develop an innovative concept in radio access in order to address high flexibility and scalability with respect to data rates and radio environments. The future converged wireless world requires in the long-term perspective a ubiquitous radio system instead of disparate systems for different purposes (cellular, WLAN, short-range access etc.). This concept will be derived by a systematic investigation of advanced radio technologies with respect to predicted user requirements and challenging scenarios. The project will contribute to the global research, regulatory and standardisation communities and processes.

  • A High-Speed and Multi-Chip WTA/MAX Circuit Design Based on Averaged-Value Comparison Approach

    Kuo-Huang LIN  Chi-Sheng LIN  Bin-Da LIU  

     
    PAPER-Electronic Circuits

      Vol:
    E87-C No:10
      Page(s):
    1724-1729

    This paper presents a voltage-mode WTA/MAX circuit that achieves high-speed and multi-chip features. Based on the efficient averaged-value comparison approach, the time and hardware complexities are proportional to O(log N) and O(N) respectively, where N is the number of inputs. In addition, a voltage comparison element (VCE) circuit is proposed to achieve multi-chip function. In the proposed circuit, the averaged-value calculator is built using resistor array that prevents the matching problem of transistor array. The whole circuit was fabricated with the TSMC 0.35 µm signal-poly quadruple-metal CMOS process. With eight input signals, the measurement results show that the proposed circuit resolved input voltages differing by 10 mV in 30 ns, and the multi-chip capability was also verified.

  • An Analog CMOS Rank-Order Extractor with O(N) Complexity Using Maximum/Winner-Take-All Circuit

    Yu-Cherng HUNG  Bin-Da LIU  

     
    PAPER-Integrated Electronics

      Vol:
    E86-C No:8
      Page(s):
    1765-1773

    In this paper, design of a new analog CMOS rank-order extractor with input expandable capability is described. An rth rank-order extraction is defined that identifies the rth largest magnitude of input variables, which is useful for fuzzy controller and artificial neural networks. The architecture is realized by using maximum circuit, winner-take-all circuit, and some auxiliary circuits. The limitations and design considerations of these circuits are analyzed in this paper. An experimental chip with seven inputs is fabricated using a 0.5 µm CMOS double-poly double-metal technology. The results of measurement show the extractor with 2 µA precision, and each rank-order extraction has about 2 µs response time. The power dissipation of the experiment chip under test includes input/output pads that has 7.2 mW for 3.3 V supply voltage. The chip area of the extractor is 600 µm 700 µm.

  • Cooperative and Competitive Network Suitable for Circuit Realization

    Masashi MORI  Yuichi TANJI  Mamoru TANAKA  

     
    PAPER-Nonlinear Problems

      Vol:
    E85-A No:9
      Page(s):
    2127-2134

    The cooperative and competitive network suitable for circuit realization is presented, based on the network proposed by Amari and Arbib. To ensure WTA process, the output function of the original network is replaced with the piecewise linear function and supplying the inputs as pulse waveforms is obtained. In the SPICE simulations, it is confirmed that the network constructed by operational amplifiers attains WTA process, even if the scale of the network becomes large.

  • Fully-Parallel VLSI Implementation of Vector Quantization Processor Using Neuron-MOS Technology

    Akira NAKADA  Masahiro KONDA  Tatsuo MORIMOTO  Takemi YONEZAWA  Tadashi SHIBATA  Tadahiro OHMI  

     
    PAPER-Processors

      Vol:
    E82-C No:9
      Page(s):
    1730-1738

    An analog vector quantization processor has been designed based on the neuron-MOS (νMOS) technology. In order to achieve a high integrating density, template information is merged into the matching cell (the absolute value circuitry) using the νMOS ROM technology. A new-architecture νMOS winner-take-all (WTA) circuit is employed for fully-parallel search for the minimum-distance vector. The WTA performs multi-resolution winner search with an automatic feedback gain control. A test chip having 256 16-element fixed template vectors has been built in a 1.5-µm double-polysilicon CMOS technology with the chip size of 7.2 mm 7.2 mm, and the basic operation of the circuits has been demonstrated.

  • A Multi-Winner Associative Memory

    Jiongtao HUANG  Masafumi HAGIWARA  

     
    PAPER-Bio-Cybernetics and Neurocomputing

      Vol:
    E82-D No:7
      Page(s):
    1117-1125

    We propose a new associative memory named Multi-Winner Associative Memory (MWAM) and study its bidirectional association properties in this paper. The proposed MWAM has two processes for pattern pairs storage: storage process and recall process. For the storage process, the proposed MWAM can represent a half of pattern pair in the distributed representation layer and can store the correspondence of pattern and its representation using the upward weights. In addition, the MWAM can store the correspondence of the distributed representation and the other half of pattern pair in the downward weights. For the recall process, the MWAM can recall information bidirectionally: a half of the stored pattern pair can be recalled by receiving the other half in the input-output layer for any stored pattern pairs.

  • Asymmetric Single Electron Turnstile and Its Electronic Circuit Applications

    Masaharu KIRIHARA  Kenji TANIGUCHI  

     
    PAPER

      Vol:
    E81-C No:1
      Page(s):
    57-62

    The basic operation characteristics of an asymmetric turnstile which transfers each electron one by one in one direction is described. A novel single electron counter circuit consisting of the asymmetric turnstiles, a load capacitor and an inverter which counts the number of high inputs is proposed. Monte Carlo circuit simulations reveal that the gate clock time of the counter circuit should be long enough to achieve allowable minimum error rate. The counter circuit implementing asymmetric single electron turnstiles is demonstrated to be applicable to a noise reduction system, a Winner-Take-All circuit and an artificial neuron circuit.

  • Learning Algorithms Using Firing Numbers of Weight Vectors for WTA Networks in Rotation Invariant Pattern Classification

    Shougang REN  Yosuke ARAKI  Yoshitaka UCHINO  Shuichi KUROGI  

     
    PAPER-Neural Networks

      Vol:
    E81-A No:1
      Page(s):
    175-182

    This paper focuses on competitive learning algorithms for WTA (winner-take-all) networks which perform rotation invariant pattern classification. Although WTA networks may theoretically be possible to achieve rotation invariant pattern classification with infinite memory capacities, actual networks cannot memorize all input data. To effectively memorize input patterns or the vectors to be classified, we present two algorithms for learning vectors in classes (LVC1 and LVC2), where the cells in the network memorize not only weight vectors but also their firing numbers as statistical values of the vectors. The LVC1 algorithm uses simple and ordinary competitive learning functions, but it incorporates the firing number into a coefficient of the weight change equation. In addition to all the functions of the LVC1, the LVC2 algorithm has a function to utilize under-utilized weight vectors. From theoretical analysis, the LVC2 algorithm works to minimize the energy of all weight vectors to form an effective memory. From computer simulation with two-dimensional rotated patterns, the LVC2 is shown to be better than the LVC1 in learning and generalization abilities, and both are better than the conventional Kohonen self-organizing feature map (SOFM) and the learning vector quantization (LVQ1). Furthermore, the incorporation of the firing number into the weight change equation is shown to be efficient for both the LVC1 and the LVC2 to achieve higher learning and generalization abilities. The theoretical analysis given here is not only for rotation invariant pattern classification, but it is also applicable to other WTA networks for learning vector quantization.

  • Functionality Enhancement in Elemental Devices for Implementing Intelligence on Integrated Circuits

    Tadahiro OHMI  Tadashi SHIBATA  

     
    INVITED PAPER

      Vol:
    E80-C No:7
      Page(s):
    841-848

    An alternative approach to increasing the functional capability of an integrated circuit chip other than the conventional scaling approach is presented and discussed. We will show the functional enhancement at a very elementary device level is essential in implementing intelligent functions at a system level. The concept of a four-terminal device is reviewed as a guiding principle in considering the device functionality enhancement. As an example of a four-terminal device, the neuron MOS transistor is presented. Applications of neuron MOS transistors to several new architecture circuits are demonstrated and the possibility of implementing intelligent functions directly on integrated circuit hardware is discussed.

  • Fundamental Device and Circuits for Synaptic Connections in Self-Organizing Neural Networks

    Kohji HOSONO  Kiyotaka TSUJI  Kazuhiro SHIBAO  Eiji IO  Hiroo YONEZU  Naoki OHSHIMA  Kangsa PAK  

     
    PAPER-Electronic Circuits

      Vol:
    E79-C No:4
      Page(s):
    560-567

    Using fundamental device and circuits, we have realized three functions required for synaptic connections in self-organizing neural networks: long term memory of synaptic weights, fixed total amount of synaptic weights in a neuron, and lateral inhibition. The first two functions have been condensed into an optical adaptive device and circuits with floating gates. Lateral inhibition has been realized by a winner-take-all circuit and a following lateral excitatory connection circuit. We have fabricated these devices and circuits using CMOS technology and confirmed the three functions. In addition, topological mapping, which is essential for feature extraction, has been formed in a primitive network constructed with the fundamental device and circuits.