The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Y(22683hit)

22521-22540hit(22683hit)

  • The Universal Recognition Problems for Parallel Multiple Context-Free Grammars and for Their Subclasses

    Yuichi KAJI  Ryuichi NAKANISHI  Hiroyuki SEKI  Tadao KASAMI  

     
    PAPER-Automaton, Language and Theory of Computing

      Vol:
    E75-D No:4
      Page(s):
    499-508

    Parallel multiple context-free grammars (pmcfg's) and multiple context-free grammars (mcfg's) were introduced as extensions of context-free grammars to describe the syntax of natural languages. Pmcfg's and mcfg's deal with tuples of strings, and it has been shown that the universal recognition problem for mcfg's is EXP-POLY time-complete where the universal recognition problem is the problem to decide whether G generates w for a given grammar G and string w. In this paper, the universal recognition problems for the class of pmcfg's and for the subclass of pmcfg's with the information-lossless condition are shown to be EXP-POLY time-complete and PSPACE-complete, respectively. It is also shown that the problems for pmcfg's and for mcfg's with a bounded dimension are both -complete and those for pmcfg's and for mcfg's with a bounded degree are both -complete. As a corollary, the problem for modified head grammars introduced by Vijay-Shanker, et al. to define the syntax of natural languages is shown to be in deterministic polynomial time.

  • Runlength-Limited Codes which Turn Peak-Shift Errors into Unidirectional Byte Errors

    Yuichi SAITOH  Hideki IMAI  

     
    LETTER

      Vol:
    E75-A No:7
      Page(s):
    898-900

    In this letter, we consider a magnetic or optical recording system employing a concatenated code that consists of a runlength-limited (d, k) block code as an inner code and a byte-error-correcting code as an outer code. (d, k) means that any two consecutive ones in the code bit stream are separated by at least d zeros and by at most k zeros. The minimum separation d and the maximum separation k are imposed in order to reduce intersymbol interference and extract clock control from the received bit stream, respectively. This letter recommends to use as the outer code a unidirectional-byte-error-correcting code instead of an ordinary byte-error-correcting code. If we devise the mapping of the code symbols of the outer code onto the codewords of the inner code, we may improve the error performance. Examples of the mappings are described.

  • Bipolar Transistor Circuit Analysis by Waveform Relaxation Method with Consideration of the Operation Point

    Koichi HAYASHI  Mitsuru KOMATSU  Masakatsu NISHIGAKI  Hideki ASAI  

     
    LETTER

      Vol:
    E75-A No:7
      Page(s):
    914-916

    This letter describes the waveform relaxation algorithm with the dynamic circuit partitioning technique based on the operation point of bipolar devices. Finally, we verify its availability for the simulation of the digital bipolar transistor circuit.

  • Wavelet Picture Coding with Transform Coding Approach

    Mutsumi OHTA  Mitsuharu YANO  Takao NISHITANI  

     
    INVITED PAPER

      Vol:
    E75-A No:7
      Page(s):
    776-785

    A novel coding scheme using orthonormal wavelet transform is proposed. Various forms of transform coding and subband coding are first reviewed. Then a wavelet coding method is proposed adopting a new approach similar to the one used for transform coding. The approach differs to conventional ones which considers wavelet coding as a class of subband coding. Simulation work is carried out to evaluate the proposed coding method. Significant improvement is obtained in subjective quality, and some improvement is also obtained in signal to noise ratio. Wavelet coding is still in its early stage of development, but can be considered to be a promising technique for image coding.

  • ACE: A Syntax-Directed Editor Customizable from Examples and Queries

    Yuji TAKADA  Yasubumi SAKAKIBARA  Takeshi OHTANI  

     
    PAPER

      Vol:
    E75-D No:4
      Page(s):
    487-498

    Syntax-directed editors have several advantages in editing programs because programming is guided by the syntax and free from syntax errors. Nevertheless, they are less popular than text editiors. One of the reason is that they force a priori specified editing structures on the user and do not allow him to use his own structure. ACE (Algorithmically Customizable syntax-directed Editor) provides a solution for this problem by using a technique of machine learning; ACE has a special function of customizing the grammar algorithmically and interactively based on the learning method for grammars from examples and queries. The grammar used in the editor is customized through interaction with the user so that the user can edit his program in a more familiar structure. The customizing function has been implemented based on the methods for learning of context-free grammars from structural examples, for which the correctness and the efficiency are proved formally. This guarantees the soundness and the efficiency of customization. Furthermore, ACE can be used as an algorithmic and interactive tool to design grammars, which is required for several purposes such as compiler design and pretty-printer design.

  • Orthogonal Discriminant Analysis for Interactive Pattern Analysis

    Yoshihiko HAMAMOTO  Taiho KANAOKA  Shingo TOMITA  

     
    LETTER-Image Processing, Computer Graphics and Pattern Recognition

      Vol:
    E75-D No:4
      Page(s):
    602-605

    In general, a two-dimensional display is defined by two orthogonal unit vectors. In developing the display, discriminant analysis has a shortcoming that the extracted axes are not orthogonal in general. First, in order to overcome the shortcoming, we propose discriminant analysis which provides an orthonormal system in the transformed space. The transformation preserves the discriminatory ability in terms of the Fisher criterion. Second, we present a necessary and sufficient condition that discriminant analysis in the original space provides an orthonormal system. Finally, we investigate the relationship between orthogonal discriminant analysis and the Karhunen-Loeve expansion in the original space.

  • Example-Based Transfer of Japanese Adnominal Particles into English

    Eiichiro SUMITA  Hitoshi IIDA  

     
    PAPER-Artificial Intelligence and Cognitive Science

      Vol:
    E75-D No:4
      Page(s):
    585-594

    This paper deals with the problem of translating Japanese adnominal particles into English according to the idea of Example-Based Machine Translation (EBMT) proposed by Nagao. Japanese adnominal particles are important because: (1) they are frequent function words; (2) to translate them into English is difficult because their translations are diversified; (3) EBMT's effectiveness for adnominal particles suggests that EBMT is effective for other function words, e. g., prepositions of European languages. In EBMT, (1) a database which consists of examples (pairs of a source language expression and its target language translation) is prepared as knowledge for translation; (2) an example whose source expression is similar to the input phrase or sentence is retrieved from the example database; (3) by replacements of corresponding words in the target expression of the retrieved example, the translation is obtained. The similarity in EBMT is computed by the summation of the distance between words multiplied by the weight of each word. The authors' method differs from preceding research in two important points: (1) the authors utilize a general thesaurus to compute the distance between words; (2) the authors propose a weight which changes for every input. The feasibility of our approach has been proven through experiments concerning success rate.

  • Native Oxide Growth on Hydrogen-Terminated Silicon Surfaces

    Tatsuhiro YASAKA  Masaru TAKAKURA  Kenichi SAWARA  Shigeo UENAGA  Hiroshi YASUTAKE  Seiichi MIYAZAKI  Masataka HIROSE  

     
    PAPER

      Vol:
    E75-C No:7
      Page(s):
    764-769

    Hydrogen termination of HF-treated Si surfaces and the oxidation kinetics have been studied by x-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared Spectroscopy (FT-IR) Attenuated Total Reflection (ATR). The oxidation of hydrogen-terminated Si in air or in pure water proceeds parallel to the surface presumably from step edges, resulting in the layer-by-layer oxidation. The oxide gryowth rate on an Si(100) surface is faster than (110) and (111) when the wafer is stored in pure water. This is interpreted in terms of the steric hindrance against molecular oxygen penetration throughth the (110) and (111) surfaces where the atom void size is equal to or smaller than O2 molecule. The oxide growth rate in pure water for heavily doped n-type Si is significantly high compared to that of heavily doped p-type Si. This is explained by the conduction electron tunneling from Si to absorbed O2 molecule to form the O2- state. O2- ions easily decompose and induce the surface electric field, enhancing the oxidation rate. It is found that the oxidation of heavily doped n-type Si in pure water is effectively suppressed by adding a small amount (1003600 ppm) of HCl.

  • Heuristic Subcube Allocation in Hypercube Systems

    O Han KANG  Soo Young YOON  Hyun Soo YOON  Jung Wan CHO  

     
    PAPER-Computer Systems

      Vol:
    E75-D No:4
      Page(s):
    517-526

    The main objective of this paper is to propose a new top-down subcube allocation scheme which has complete subcube recognition capability with quick response time. The proposed subcube allocation scheme, called Heuristic Subcube Allocation (HSA) strategy, is based on a heuristic and undirected graph, called Subcube (SC)-graph, whose vertices represent the free subcubes, and edge represents inter-relationships between free subcubes. It helps to reduce the response time and internal/external fragmentation. When a new subcube is released, the higher dimension subcube is generated by the cycle detection in the SC-graph, and the heuristic is used to reduce the allocation time and to maintain the dimension of the free subcube as high as possible. It is theoretically shown that the HSA strategy is not only statically optimal but also it has a complete subcube recognition capability in a dynamic environment. Extensive simulation results show that the HSA strategy improves the performance and significantly reduces the response time compared to the previously proposed schemes.

  • Learning Non-parametric Densities in terms of Finite-Dimensional Parametric Hypotheses

    Kenji YAMANISHI  

     
    PAPER

      Vol:
    E75-D No:4
      Page(s):
    459-469

    This paper proposes a model for learning non-parametric densities using finite-dimensional parametric densities by applying Yamanishi's stochastic analogue of Valiant's probably approximately correct learning model to density estimation. The goal of our learning model is to find, with high probability, a good parametric approximation of the non-parametric target density with sample size and computation time polynomial in parameters of interest. We use a learning algorithm based on the minimum description length (MDL) principle and derive a new general upper bound on the rate of convergence of the MDL estimator to a true non-parametric density. On the basis of this result, we demonstrate polynomial-sample-size learnability of classes of non-parametric densities (defined under some smoothness conditions) in terms of exponential families with polynomial bases, and we prove that under some appropriate conditions, the sample complexity of learning them is bounded as O((1/ε)(2r1)/2r1n(2r1)/2r(1/ε)(1/ε)1n(1/δ) for a smoothness parameter r (a positive integer), where ε and δ are respectively accuracy and confidence parameters. Futher, we demonstrate polynomial-time learnability of classes of non-parametric densities (defined under some smoothness conditions) in terms of histogram densities with equal-length cells, and we prove that under some appropriate condition, the sample complexity of learning them is bounded as O((1/ε)3/21n3/2(1/ε)(1/ε)1n(1/δ)).

  • Reaction of H-Terminated Si(100) Surfaces with Oxidizer in the Heating and Cooling Process

    Norikuni YABUMOTO  Yukio KOMINE  

     
    PAPER

      Vol:
    E75-C No:7
      Page(s):
    770-773

    Thermal desorption spectroscopy (TDS) is applied to analyze the oxidation reactions of hydrogen-terminated Si(100) surfaces in both the heating and cooling processes after hydrogen desorption. The oxidation reaction of oxygen and water with a silicon surface after hydrogen desorption shows hysteresis in the heating and cooling processes. In the cooling process, oxidation finishes when the silicon surface is adequately oxidized to about a 10 thickness. Oxidation continues to occur at lower temperatures when the total volume of oxygen and water is too small to saturate the bare silicon surface. The reaction of water with silicon releases hydrogen at more than 500. Hydrogen does not adsorb on the silicon oxide surface. A trace amount of oxygen, less than 110-6 Torr, roughens the surface.

  • A New Cleaning Solution for Metallic Impurities on the Silicon Wafer Surface

    Tsugio SHIMONO  Mikio TSUJI  

     
    PAPER

      Vol:
    E75-C No:7
      Page(s):
    812-815

    A new cleaning solution (FPM; HF-H2O2-H2O) was investigated in order to remove effectively metallic impurities on the silicon wafer surface. The removability of metallic impurities on the wafer surface and the concentrations of metallic impurities adsorbed on the wafer surface from each contaminated cleaning solution were compared between FPM and conventional cleaning solutions, such as HPM (HCl-H2O2-H2O), SPM (H2SO4-H2O2), DHF (HF-H2O) and APM (NH4OH-H2O2-H2O). This new cleaning solution had higher removability of metallic impurities than conventional ones. Adsorption of some kinds of metallic impurities onto the wafer surface was a serious problem for conventional cleaning solutions. This problem was solved by the use of FPM. FPM was important not only as a cleaning solution for metallic impurities, but also as an etchant. Furthemore, this new cleaning solution made possible to construct a simple cleaning system, because the concentrations of HF and H2O2 are good to be less than 1% for each, and it can be used at room temperature.

  • A 15 GFLOPS Parallel DSP System for Super High Definition Image Processing

    Tomoko SAWABE  Tetsurou FUJII  Hiroshi NAKADA  Naohisa OHTA  Sadayasu ONO  

     
    INVITED PAPER

      Vol:
    E75-A No:7
      Page(s):
    786-793

    This paper describes a super high definition (SHD) image processing system we have developed. The computing engine of this system is a parallel processing system with 128 processing elements called NOVI- HiPIPE. A new pipelined vector processor is introduced as a backend processor of each processing element in order to meet the great computing power required by SHD image processing. This pipelined vector processor can achieve 120 MFLOPS. The 128 pipelined vector processors installed in NOVI- HiPIPE yield a total system peak performance of 15 GFLOPS. The SHD image processing system consists of an SHD image scanner, and SHD image storage node, a full color printer, a film recorder, NOVI- HiPIPE, and a Super Frame Memory. The Super Frame Memory can display a ful color moving image sequence at a rate of 60 fps on a CRT monitor at a resolution of 2048 by 2048 pixels. Workstations, interconnected through an Ethernet, are used to control these units, and SHD image data can be easily transfered among the units. NOVI- HiPIPE has a frame memory which can display SHD still images on a color monitor, therefore, one processed frame can be directly displayed. We are developing SHD image processing algorithms and parallel processing methodologies using this system.

  • Description and Realization of Separable-Denominator Two-Dimensional Transfer Matrix

    Naomi HARATANI  

     
    PAPER-Multidimensional Signals, Systems and Filters

      Vol:
    E75-A No:7
      Page(s):
    806-812

    In this paper, a new description of a separable-denominator (S-D) two-dimensional (2-D) transfer matrix is proposed, and its realization is considered. Some of this problem had been considered for the transfer matrices whose elements are two-variables rational functions. We shall propose a 2-D transfer matrix whose inputs-outputs relation is represented by a ratio of two-variables polynomial matrices, and present an algorithm to obtain a 2-D state-space model from it. Next, it is shown that the description proposed in this paper is always minimally realizable. And, we shall present a method of obtaining the description proposed in this paper from a S-D 2-D rational transfer matrix.

  • Property of Circular Convolution for Subband Image Coding

    Hitoshi KIYA  Kiyoshi NISHIKAWA  Masahiko SAGAWA  

     
    PAPER-Image Coding and Compression

      Vol:
    E75-A No:7
      Page(s):
    852-860

    One of the problems with subband image coding is the increase in image sizes caused by filtering. To solve this, it has been proposed to process the filtering by transforming input sequence into a periodic one. Then filtering is implemented by circular convolution. Although this technique solves the problem, there are very strong restrictions, i.e., limitation on the filter type and on the filter bank structure. In this paper, development of this technique is presented. Consequently, any type of linear phase FIR filter and any structure of filter bank can be used.

  • 2D Simulation of Particle Formation, Growth, and Deposition in Low-Pressure CVDs: Application of CONTAMINATE Version 2.0

    Evan WHITBY  Koichi TSUZUKI  

     
    PAPER

      Vol:
    E75-C No:7
      Page(s):
    852-859

    As part of Hitachi's development of clean semiconductor processing equipment, the Fluids Modeling Group of the Mechanical Engineering Research Laboratory is developing a computer model, CONTAMINATE, for simulating contamination of wafers in chemical vapor deposition (CVD) systems. CONTAMINATE is based on a 2D implementation of the SIMPLER algorithm for simulating convection/diffusion transport processes. The new model includes modules for simulating fluid flow, heat transfer, chemical reactions, and gas-phase formation and deposition of clusters and particles. CONTAMINATE outputs property fields and estimates of various film quality indices. Using CONTAMINATE we simulated a SiH4: O2: N2 gas mixture at 300 K flowing over a wafer heated to 700 K. System pressures were varied from 1-100 torr and SiH4 pressures from 0.1 to 10 torr. Deposition characteristics are in qualitative agreement with actual systems and are summarized as follows: (1) No particles larger than 0.1µm deposited for any of the conditions tested. (2) Film damage occurred above 10 torr, but no damage occurred below 10 torr. (3) Increasing SiH4 pressure at constant system pressure eliminated particle deposition because particles grew large enought that thermophoresis blocked particle diffusion. (4) Conformal deposition of featured surfaces was achieved only at 1 torr. (5) Film thickness variation over the diameter of the wafer was 15% at 100 torr, 3% at 10 torr, and 1% at 1 torr.

  • Polynomial Time Inference of Unions of Two Tree Pattern Languages

    Hiroki ARIMURA  Takeshi SHINOHARA  Setsuko OTSUKI  

     
    PAPER

      Vol:
    E75-D No:4
      Page(s):
    426-434

    In this paper, we consider the polynomial time inferability from positive data for unions of two tree pattern languages. A tree pattern is a structured pattern known as a term in logic programming, and a tree pattern language is the set of all ground instances of a tree pattern. We present a polynomial time algorithm to find a minimal union of two tree pattern languages containing given examples. Our algorithm can be considered as a natural extension of Plotkin's least generalization algorithm, which finds a minimal single tree pattern language. By using this algorithm, we can realize a consistent and conservative polynomial time inference machine that identifies unions of two tree pattern languages from positive data in the limit.

  • On the Role of Equivalence Queries in Learning via Queries

    Seiichi TANI  

     
    PAPER

      Vol:
    E75-D No:4
      Page(s):
    435-441

    We consider the role of equivalence queries in learning unknown concepts using membership and equivalence queries. Equivalence queries have the following two roles: (R1) indicating whether a learning algorithm has succeeded to learn the unknown concept and (R2) providing counterexamples. In this paper, we consider the learning using membership and equivalence queries but using only the (R2) part of equivalence queries. In order to gain an insight into the learning membership and equivalence queries but using only the (R2) part of equivalence queries, we define equivalence-detecting problem". Let C be a representation class which is polynomial time learnable using membership and equivalence queries. We show that if the equivalence-detecting problem for C is polynomial time solvable then C is polynomial time learnable using membership and equivalence queries without using (R1). Moreover, we show that under certain conditions, the two notions, polynomial time solvability of equivalence-detecting problem" and polynomial time learnability using membership and equivalence queries without using (R1)", are equivalent. For concrete examples, we prove that dfas are polynomial time learnable using membership and equivalence queries without using (R1) in the learning situation where the algorithm is informed the number of states of the minimum states dfa accepting the target set in advance. On the other hand, we show that the equivalence-detecting problem for dfas are not solvable in the learning situation where the algorithm can use no additional information. This result together with our main result shows that, in this learning situation, the (R1) part of equivalence queries are necessary to learn dfas using membership and equivalence queries.

  • Considerations on ATM Network Performance Planning

    Hideyo MURAKAMI  Tadahiro YOKOI  Masahiro TAKA  

     
    TUTORIAL PAPER

      Vol:
    E75-B No:7
      Page(s):
    563-571

    In an ATM network, there are quality impairments particular to the ATM network such as cell loss and delay variation. During ATM network planning, therefore, various causes of quality impairments should be clarified. This paper overviews ATM network performance issues, and discusses performance requirements for the SDH network which will be applied as a physical layer of the ATM network. It also presents ATM network performance planning methods on cell loss and cell delay.

  • Recent Advances in Principles and Algorithms for Communications Network Design and Planning

    Kinji ONO  Yu WATANABE  

     
    INVITED PAPER

      Vol:
    E75-B No:7
      Page(s):
    556-562

    The introduction of Integrated Services Digital Networks (ISDNs) poses a variety of new questions on telecommunications network design and planning. Furthermore, the formulation of traditional network design and planning problems need to be revisited in the ISDN context. This paper presents an overview of the recent progress and new challenges in developing ISDN design and planning methodologies that exploit revolutionary new telecommunications technologies. It will cover some important issues for ISDN design and planning, and will concentrate on three issues that are of particular importance: Design of networks with digital information transfer capabilities, design of networks with advanced network/traffic control techniques, and use of reliability objectives for network design and planning.

22521-22540hit(22683hit)