The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Y(22683hit)

18921-18940hit(22683hit)

  • Admissibility of Memorization Learning with Respect to Projection Learning in the Presence of Noise

    Akira HIRABAYASHI  Hidemitsu OGAWA  Yukihiko YAMASHITA  

     
    PAPER-Bio-Cybernetics and Neurocomputing

      Vol:
    E82-D No:2
      Page(s):
    488-496

    In learning of feed-forward neural networks, so-called 'training error' is often minimized. This is, however, not related to the generalization capability which is one of the major goals in the learning. It can be interpreted as a substitute for another learning which considers the generalization capability. Admissibility is a concept to discuss whether a learning can be a substitute for another learning. In this paper, we discuss the case where the learning which minimizes a training error is used as a substitute for the projection learning, which considers the generalization capability, in the presence of noise. Moreover, we give a method for choosing a training set which satisfies the admissibility.

  • Viewpoint-Based Similarity Discernment on SNAP

    Takashi YUKAWA  Sanda M. HARABAGIU  Dan I. MOLDOVAN  

     
    LETTER-Artificial Intelligence and Cognitive Science

      Vol:
    E82-D No:2
      Page(s):
    500-502

    This paper presents an algorithm for viewpoint-based similarity discernment of linguistic concepts on Semantic Network Array Processor (SNAP). The viewpoint-based similarity discernment plays a key role in retrieving similar propositions. This is useful for advanced knowledge processing areas such as analogical reasoning and case-based reasoning. The algorithm assumes that a knowledge base is constructed for SNAP, based on information acquired from the WordNet linguistic database. The algorithm identifies paths on the knowledge base between each given concept and a given viewpoint concept, then computes a similarity degree between the two concepts based on the number of nodes shared by the paths. A small scale knowledge base was constructed and an experiment was conducted on a SNAP simulator that demonstrated the feasibility of this algorithm. Because of SNAP's scalability, the algorithm is expected to work similarly on a large scale knowledge base.

  • Acceleration Techniques for the Network Inversion Algorithm

    Hiroyuki TAKIZAWA  Taira NAKAJIMA  Masaaki NISHI  Hiroaki KOBAYASHI  Tadao NAKAMURA  

     
    LETTER-Bio-Cybernetics and Neurocomputing

      Vol:
    E82-D No:2
      Page(s):
    508-511

    We apply two acceleration techniques for the backpropagation algorithm to an iterative gradient descent algorithm called the network inversion algorithm. Experimental results show that these techniques are also quite effective to decrease the number of iterations required for the detection of input vectors on the classification boundary of a multilayer perceptron.

  • Optimal Robot Self-Localization and Accuracy Bounds

    Kenichi KANATANI  Naoya OHTA  

     
    PAPER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E82-D No:2
      Page(s):
    447-452

    We discuss optimal estimation of the current location of a mobile robot by matching an image of the scene taken by the robot with the model of the environment. We first present a theoretical accuracy bound and then give a method that attains that bound, which can be viewed as describing the probability distribution of the current location. Using real images, we demonstrate that our method is superior to the naive least-squares method. We also confirm the theoretical predictions of our theory by applying the bootstrap procedure.

  • Integrated Circuits of Map Chaos Generators

    Hidetoshi TANAKA  Shigeo SATO  Koji NAKAJIMA  

     
    PAPER

      Vol:
    E82-A No:2
      Page(s):
    364-369

    A chaotic noise is one of the most important implements for information processing such as neural networks. It has been suggested that chaotic neural networks have high performance ability for information processing. In this paper, we report two designs of a compact chaotic noise generator for large integration circuits using CMOS technology. The chaotic noise is generated using map chaos. We design both of the logistic map type and the tent map type circuits. These chaotic noise generators are compact as compared with the other circuits. The results show that the successful chaotic operations of the circuits because of the positive Lyapunov number. We calculate the Lyapunov exponents to certify the results of the chaotic operations. However, it is hard to estimate its accurate number for noisy data using the conventional method. And hence, we propose the modified calculation of the Lyapunov exponent for noisy data. These two circuits are expected to be utilized for various applications.

  • A Content-Addressable Memory Using "Switched Diffusion Analog Memory with Feedback Circuit"

    Tomochika HARADA  Shigeo SATO  Koji NAKAJIMA  

     
    PAPER

      Vol:
    E82-A No:2
      Page(s):
    370-377

    For the purpose of realizing a new intelligent system and its simplified VLSI implementation, we propose a new nonvolatile analog memory called "switched diffusion analog memory with feedback circuit (FBSDAM). " FBSDAM has linear writing and erasing characteristics. Therefore, FBSDAM is useful for memorizing an analog value exactly. We also propose a new analog content-addressable memory (CAM) which has neural-like learning and discriminating functions which discriminate whether an incoming pattern is an unknown pattern or a stored pattern. We design and fabricate the CAM using FBSDAM by means of the 4µm double-poly single-metal CMOS process and nonvolatile analog memory technology which are developed by us. The chip size is 3.1 mm3.1 mm. We estimate that the CAM is composed of 50 times fewer transistors and requires 70 times fewer calculation steps than a typical digital computer implemented using similar technology.

  • Some Modifications of the Tournament Algorithm for the Mutual Exclusion Problem

    Yoshihide IGARASHI  Hironobu KURUMAZAKI  Yasuaki NISHITANI  

     
    PAPER-Algorithm and Computational Complexity

      Vol:
    E82-D No:2
      Page(s):
    368-375

    We propose two lockout-free (starvation-free) mutual exclusion algorithms for the asynchronous multi-writer/reader shared memory model. The first algorithm is a modification of the well-known tournament algorithm for the mutual exclusion problem. By the modification we can speed up the original algorithm. The running time of the modified algorithm from the entrance of the trying region to the entrance of the critical region is at most (n-1)c+O(nl), where n is the number of processes, l is an upper bound on the time between successive two steps of each process, and c is is an upper bound on the time that any user spends in the critical region. The second algorithm is a further modification of the first algorithm. It is designed so that some processes have an advantage of access to the resource over other processes.

  • A Fast and Stable Method for Detecting and Tracking Medical Organs in MRI Sequences

    Dong Joong KANG  Chang Yong KIM  Yang Seok SEO  In So KWEON  

     
    LETTER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E82-D No:2
      Page(s):
    497-499

    A discrete dynamic model for defining contours in 2-D medical images is presented. An active contour in this objective is optimized by a dynamic programming algorithm, for which a new constraint that has fast and stable properties is introduced. The internal energy of the model depends on local behavior of the contour, while the external energy is derived from image features. The algorithm is able to rapidly detect convex and concave objects even when the image quality is poor.

  • ASADAL/PROVER: A Toolset for Verifying Temporal Properties of Real-Time System Specifications in Statechart

    Kwang-Il KO  Kyo C. KANG  

     
    PAPER-Sofware System

      Vol:
    E82-D No:2
      Page(s):
    398-411

    Critical properties of real-time embedded systems must be verified before these systems are deployed as failing to meet these properties may cause considerable property damages and/or human casualties. Although Statechart is one of the most popular languages for modeling behavior of real-time systems, proof systems and analysis tools for Statechart so far are in research and do not fully support the semantics of the original Statechart, or have limited capabilities for proving real-time properties. This paper introduces a toolset ASADAL/PROVER for verifying temporal properties of Statechart extended with justice and compassion properties. ASADAL/PROVER is composed of two subsystems, RTTL-Prover and Model-Checker. The RTTL-Prover converts Statechart specifications into real-time temporal logic (RTTL) formulas of Ostroff, and then checks if the formulas satisfy a temporal property (also in RTTL) using theorem proving techniques. The Model-Checker supports verification of a predefined set of real-time properties using a model checking technique. The RTTL-Prover can support verification of any real-time properties as long as they can be specified in RTTL and, therefore, messages generated by the tool are general and may not be of much help in debugging Statechart specifications. The Model-Checker, however, can provide detailed information for debugging. ASADAL/PROVER has been applied successfully to some experimental systems. One of on-going researches in this project is to apply the symbolic model-checking technique by[3]to support Statecharts with a much larger global-state space. We are also extending the types of temporal properties supported by the Model-Checker.

  • A Frame-Dependent Fuzzy Compensation Method for Speech Recognition over Time-Varying Telephone Channels

    Wei-Wen HUNG  Hsiao-Chuan WANG  

     
    PAPER-Speech Processing and Acoustics

      Vol:
    E82-D No:2
      Page(s):
    431-438

    Speech signals transmitted over telephone network often suffer from interference due to ambient noise and channel distortion. In this paper, a novel frame-dependent fuzzy channel compensation (FD-FCC) method employing two-stage bias subtraction is proposed to minimize the channel effect. First, through maximum likelihood (ML) estimation over the set of all word models, we choose the word model which is best matched with the input utterance. Then, based upon this word model, a set of mixture biases can be derived by averaging the cepstral differences between the input utterance and the chosen model. In the second stage, instead of using a single bias, a frame-dependent bias is calculated for each input frame to equalize the channel variations in the input utterance. This frame-dependent bias is achieved by the convex combination of those mixture biases which are weighted by a fuzzy membership function. Experimental results show that the channel effect can be effectively canceled even though the additive background noise is involved in a telephone speech recognition system.

  • Optical Path Cross-Connect System Using Matrix Wavelength Division Multiplex Scheme

    Kazunari HARADA  Kenji SHIMIZU  Nobuhiro SUGANO  Teruhiko KUDOU  Takeshi OZEKI  

     
    PAPER-Circuit Switching and Cross-Connecting

      Vol:
    E82-C No:2
      Page(s):
    292-296

    Wavelength division multiplex (WDM) photonic networks are expected as the key for the global communication infrastructure. Recent increase of communication demands require large-scale highly-dense WDM systems, which results in severe requirements for optical cross-connect systems, such as cross-talk specification. In this paper, we propose a new optical path cross-connect system (OPXC) using matrix-WDM scheme, which makes it possible to reduce cross-talk requirements of WDM filters and to construct OPXC in modular structures. The matrix-WDM scheme is a concept of two-layered optical paths, which provides wavelength group managements in the fiber dispersion equalization and EDFA gain equalization.

  • A Real-Time Low-Rate Video Compression Algorithm Using Multi-Stage Hierarchical Vector Quantization

    Kazutoshi KOBAYASHI  Kazuhiko TERADA  Hidetoshi ONODERA  Keikichi TAMARU  

     
    PAPER

      Vol:
    E82-A No:2
      Page(s):
    215-222

    We propose a real-time low-rate video compression algorithm using fixed-rate multi-stage hierarchical vector quantization. Vector quantization is suitable for mobile computing, since it demands small computation on decoding. The proposed algorithm enables transmission of 10 QCIF frames per second over a low-rate 29.2 kbps mobile channel. A frame is hierarchically divided by sub-blocks. A frame of images is compressed in a fixed rate at any video activity. For active frames, large sub-blocks for low resolution are mainly transmitted. For inactive frames, smaller sub-blocks for high resolution can be transmitted successively after a motion-compensated frame. We develop a compression system which consists of a host computer and a memory-based processor for the nearest neighbor search on VQ. Our algorithm guarantees real-time decoding on a poor CPU.

  • Effectiveness of Outline Measures of Strength against Differential and Linear Cryptanalysis

    Yasuyoshi KANEKO  Tsutomu MATSUMOTO  

     
    LETTER

      Vol:
    E82-A No:1
      Page(s):
    130-133

    This letter examines outline measures of strength against the differential and linear cryptanalysis. These measures are useful to estimate the number of rounds giving an immune iterated cipher. This letter reports that the outline measures of strength are useful to relatively estimate the strength of generalized feistel ciphers.

  • Contact Fretting of Electronic Connectors

    Morton ANTLER  

     
    INVITED PAPER

      Vol:
    E82-C No:1
      Page(s):
    3-12

    Connector contact resistance may become unstable if fretting occurs. Such motions result in the formation of insulating oxides on the surface of base metal contacts or organic polymers on contacts made of platinum group metals. These degradations are termed fretting corrosion and frictional polymerization, respectively. Motion may be caused by external vibration or fluctuating temperature. The lower the frequency of movement, the fewer the number of cycles to contact failure. Increasing the contact normal load or reducing the amplitude of movement may stabilize the connection. Tin and palladium and many of their alloys are especially prone to fretting failure. Tin mated to gold is worse than all-tin contacts. Gold and high gold-silver alloys that are softer when mated to palladium stabilize contact resistance since these metals transfer to the palladium during fretting; but flash gold coatings on palladium and palladium nickel offer marginal improvement for the gold often quickly wears out. Dissimilar metal contact pairs show behaviors like that of the metal which predominates on the surface by transfer. Contact lubricants can often prevent fretting failures and may even restore unlubricated failed contacts to satisfactory service.

  • Revisiting the Hierarchical Data Model

    H. V. JAGADISH  Laks V. S. LAKSHMANAN  Divesh SRIVASTAVA  

     
    INVITED PAPER

      Vol:
    E82-D No:1
      Page(s):
    3-12

    Much of the data we deal with every day is organized hierarchically: file systems, library classification schemes and yellow page categories are salient examples. Business data too, benefits from a hierarchical organization, and indeed the hierarchical data model was quite prevalent thirty years ago. Due to the recently increased importance of X. 500/LDAP directories, which are hierarchical, and the prevalence of aggregation hierarchies in datacubes, there is now renewed interest in the hierarchical organization of data. In this paper, we develop a framework for a modern hierarchical data model, substantially improved from the original version by taking advantage of the lessons learned in the relational database context. We argue that this new hierarchical data model has many benefits with respect to the ubiquitous flat relational data model.

  • Radio Resource Assignment in Multiple-Chip-Rate DS/CDMA Systems Supporting Multimedia Services

    Young-Woo KIM  Seung Joon LEE  Min Young CHUNG  Jeong Ho KIM  Dan Keun SUNG  

     
    PAPER-Mobile Communication

      Vol:
    E82-B No:1
      Page(s):
    145-155

    This paper is concerned with radio resource allocation in multiple-chip-rate (MCR) DS/CDMA systems accommodating multimedia services with different information rates and quality requirements. Considering both power spectral density (PSD) over a radio frequency (RF) band and the effect of RF input filtering on the receiver in MCR-DS/CDMA systems, criteria for capacity estimation are presented and the characteristics of co-channel interference between subsystems are investigated. System performance in MCR-DS/CDMA systems is strongly affected by radio resource assignment. A minimum power-increment-based resource assignment scheme for an efficient resource assignment scheme is proposed herein. The performance of this scheme is compared with that of a random-based resource assignment scheme in terms of blocking probability and normalized throughput. The minimum power-increment-based resource assignment scheme yields a better performance than the random-based resource assignment scheme for multimedia services.

  • Practical and Proven Zero-Knowledge Constant Round Variants of GQ and Schnorr

    Yvo G. DESMEDT  Kaoru KUROSAWA  

     
    PAPER

      Vol:
    E82-A No:1
      Page(s):
    69-76

    In 1992 Burmester studied how to adapt the Guillou-Quisquater identification scheme to a proven zero-knowledge proof without significantly increasing the communication complexity and computational overhead. He proposed an almost constant round version of Guillou-Quisquater. Di Crescenzo and Persiano presented a 4-move constant round zero-knowledge interactive proof of membership for the corresponding language. A straightforward adaptation of the ideas of Bellare-Micali-Ostrovsky will also give a constant round protocol. However, these protocols significantly increase the communication and computational complexity of the scheme. In this paper we present constant round variants of the protocols of Guillou-Quisquater and Schnorr with the same (order-wise) communication and computational complexity as the original schemes. Note that in our schemes the probability that a dishonest prover will fool a honest verifier may be exponentially small, while it can only be one over a superpolynomial in Burmester's scheme. Our protocols are perfect zero-knowledge under no cryptographic assumptions.

  • On a Structure of Block Ciphers with Provable Security against Differential and Linear Cryptanalysis

    Mitsuru MATSUI  

     
    PAPER

      Vol:
    E82-A No:1
      Page(s):
    117-122

    We introduce a new methodology for designing block ciphers with provable security against differential and linear cryptanalysis. It is based on three new principles: change of the location of round functions, round functions with recursive structure, and substitution boxes of different sizes. The first realizes parallel computation of the round functions without losing provable security, and the second reduces the size of substitution boxes; moreover, the last is expected to make algebraic attacks difficult. This structure gives us a simple and effective method for designing secure and fast block ciphers in hardware as well as in software implementation. Block encryption algorithm MISTY was designed on the basis of this methodology.

  • The Integrated Scheduling and Allocation of High-Level Test Synthesis

    Tianruo YANG  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E82-A No:1
      Page(s):
    145-158

    This paper presents a high-level test synthesis algorithm for operation scheduling and data path allocation. Data path allocation is achieved by a controllability and observability balance allocation technique which is based on testability analysis at register-transfer level. Scheduling, on other hand, is carried out by rescheduling transformations which change the default scheduling to improve testability. Contrary to other works in which the scheduling and allocation tasks are performed independently, our approach integrates scheduling and allocation by performing them simultaneously so that the effects of scheduling and allocation on testability are exploited more effectively. Additionally, since sequential loops are widely recognized to make a design hard-to-test, a complete (functional and topological) loop analysis is performed at register-transfer level in order to avoid loop creation during the integrated test synthesis process. With a variety of synthesis benchmarks, experimental results show clearly the advantages of the proposed algorithm.

  • Fast Software Implementations of MISTY1 on Alpha Processors

    Junko NAKAJIMA  Mitsuru MATSUI  

     
    PAPER

      Vol:
    E82-A No:1
      Page(s):
    107-116

    In this paper, we show two methods for fast software implementations of block cipher algorithm MISTY1 on Digital Alpha processors. One is based on the method proposed by Biham at the fourth Fast Software Encryption Workshop. This method, which is called "bitslice," realizes high performance by regarding the target cipher as a collection of logic gates and processing plural blocks in parallel, although its data format is non-standard. The other is standard implementation where all modes of operation are available. We analyze the architecture of Alpha and discuss how to optimize MISTY1 on the processor. As a result, our assembly language programs achieved an encryption speed of 288 Mbps for the bitslice version and 105 Mbps for the standard version, respectively, on Alpha 21164A (500 MHz).

18921-18940hit(22683hit)