The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Z(5900hit)

541-560hit(5900hit)

  • Range Points Migration Based Spectroscopic Imaging Algorithm for Wide-Beam Terahertz Subsurface Sensor Open Access

    Takamaru MATSUI  Shouhei KIDERA  

     
    BRIEF PAPER-Electromagnetic Theory

      Pubricized:
    2019/09/25
      Vol:
    E103-C No:3
      Page(s):
    127-130

    Here, we present a novel spectroscopic imaging method based on the boundary-extraction scheme for wide-beam terahertz (THz) three-dimensional imaging. Optical-lens-focusing systems for THz subsurface imaging generally require the depth of the object from the surface to be input beforehand to achieve the desired azimuth resolution. This limitation can be alleviated by incorporating a wide-beam THz transmitter into the synthetic aperture to automatically change the focusing depth in the post-signal processing. The range point migration (RPM) method has been demonstrated to have significant advantages in terms of imaging accuracy over the synthetic-aperture method. Moreover, in the RPM scheme, spectroscopic information can be easily associated with each scattering center. Thus, we propose an RPM-based terahertz spectroscopic imaging method. The finite-difference time-domain-based numerical analysis shows that the proposed algorithm provides accurate target boundary imaging associated with each frequency-dependent characteristic.

  • Bounds for the Multislope Ski-Rental Problem

    Hiroshi FUJIWARA  Kei SHIBUSAWA  Kouki YAMAMOTO  Hiroaki YAMAMOTO  

     
    PAPER

      Pubricized:
    2019/11/25
      Vol:
    E103-D No:3
      Page(s):
    481-488

    The multislope ski-rental problem is an online optimization problem that generalizes the classical ski-rental problem. The player is offered not only a buy and a rent options but also other options that charge both initial and per-time fees. The competitive ratio of the classical ski-rental problem is known to be 2. In contrast, the best known so far on the competitive ratio of the multislope ski-rental problem is an upper bound of 4 and a lower bound of 3.62. In this paper we consider a parametric version of the multislope ski-rental problem, regarding the number of options as a parameter. We prove an upper bound for the parametric problem which is strictly less than 4. Moreover, we give a simple recurrence relation that yields an equation having a lower bound value as its root.

  • Loosely Stabilizing Leader Election on Arbitrary Graphs in Population Protocols without Identifiers or Random Numbers

    Yuichi SUDO  Fukuhito OOSHITA  Hirotsugu KAKUGAWA  Toshimitsu MASUZAWA  

     
    PAPER

      Pubricized:
    2019/11/27
      Vol:
    E103-D No:3
      Page(s):
    489-499

    We consider the leader election problem in the population protocol model, which Angluin et al. proposed in 2004. A self-stabilizing leader election is impossible for complete graphs, arbitrary graphs, trees, lines, degree-bounded graphs, and so on unless the protocol knows the exact number of nodes. In 2009, to circumvent the impossibility, we introduced the concept of loose stabilization, which relaxes the closure requirement of self-stabilization. A loosely stabilizing protocol guarantees that starting from any initial configuration, a system reaches a safe configuration, and after that, the system keeps its specification (e.g., the unique leader) not forever but for a sufficiently long time (e.g., an exponentially long time with respect to the number of nodes). Our previous works presented two loosely stabilizing leader election protocols for arbitrary graphs; one uses agent identifiers, and the other uses random numbers to elect a unique leader. In this paper, we present a loosely stabilizing protocol that solves leader election on arbitrary graphs without agent identifiers or random numbers. Given upper bounds N and Δ of the number of nodes n and the maximum degree of nodes δ, respectively, the proposed protocol reaches a safe configuration within O(mn2d log n+mNΔ2 log N) expected steps and keeps the unique leader for Ω(NeN) expected steps, where m is the number of edges and d is the diameter of the graph.

  • Fast Inference of Binarized Convolutional Neural Networks Exploiting Max Pooling with Modified Block Structure

    Ji-Hoon SHIN  Tae-Hwan KIM  

     
    LETTER-Software System

      Pubricized:
    2019/12/03
      Vol:
    E103-D No:3
      Page(s):
    706-710

    This letter presents a novel technique to achieve a fast inference of the binarized convolutional neural networks (BCNN). The proposed technique modifies the structure of the constituent blocks of the BCNN model so that the input elements for the max-pooling operation are binary. In this structure, if any of the input elements is +1, the result of the pooling can be produced immediately; the proposed technique eliminates such computations that are involved to obtain the remaining input elements, so as to reduce the inference time effectively. The proposed technique reduces the inference time by up to 34.11%, while maintaining the classification accuracy.

  • Simulated Annealing Method for Relaxed Optimal Rule Ordering

    Takashi HARADA  Ken TANAKA  Kenji MIKAWA  

     
    PAPER

      Pubricized:
    2019/12/20
      Vol:
    E103-D No:3
      Page(s):
    509-515

    Recent years have witnessed a rapid increase in cyber-attacks through unauthorized accesses and DDoS attacks. Since packet classification is a fundamental technique to prevent such illegal communications, it has gained considerable attention. Packet classification is achieved with a linear search on a classification rule list that represents the packet classification policy. As such, a large number of rules can result in serious communication latency. To decrease this latency, the problem is formalized as optimal rule ordering (ORO). In most cases, this problem aims to find the order of rules that minimizes latency while satisfying the dependency relation of the rules, where rules ri and rj are dependent if there is a packet that matches both ri and rj and their actions applied to packets are different. However, there is a case in which although the ordering violates the dependency relation, the ordering satisfies the packet classification policy. Since such an ordering can decrease the latency compared to an ordering under the constraint of the dependency relation, we have introduced a new model, called relaxed optimal rule ordering (RORO). In general, it is difficult to determine whether an ordering satisfies the classification policy, even when it violates the dependency relation, because this problem contains unsatisfiability. However, using a zero-suppressed binary decision diagram (ZDD), we can determine it in a reasonable amount of time. In this paper, we present a simulated annealing method for RORO which interchanges rules by determining whether rules ri and rj can be interchanged in terms of policy violation using the ZDD. The experimental results show that our method decreases latency more than other heuristics.

  • Performance Analysis of Weighted Rank Constrained Rank Minimization Interference Alignment for Three-Tier Downlink Heterogeneous Networks

    Ahmed M. BENAYA  Osamu MUTA  Maha ELSABROUTY  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2019/08/27
      Vol:
    E103-B No:3
      Page(s):
    262-271

    Heterogeneous networks (HetNets) technology is expected to be applied in next generation cellular networks to boost system capacity. However, applying HetNets introduces a significant amount of interference among different tiers within the same cell. In this paper, we propose a weighted rank constrained rank minimization (WRCRM) based interference alignment (IA) approach for three-tier HetNets. The concept of RCRM is applied in a different way to deal with the basic characteristic of different tiers: their different interference tolerance. In the proposed WRCRM approach, interference components at different tiers are weighted with different weighting factors (WFs) to reflect their vulnerability to interference. First, we derive an inner and a loose outer bound on the achievable degrees of freedom (DoF) for the three-tier system that is modeled as a three-user mutually interfering broadcast channel (MIBC). Then, the derived bounds along with the well-known IA feasibility conditions are used to show the effectiveness of the proposed WRCRM approach. Results show that there exist WF values that maximize the achievable interference-free dimensions. Moreover, adjusting the required number of DoF according to the derived bounds improves the performance of the WRCRM approach.

  • Local Memory Mapping of Multicore Processors on an Automatic Parallelizing Compiler

    Yoshitake OKI  Yuto ABE  Kazuki YAMAMOTO  Kohei YAMAMOTO  Tomoya SHIRAKAWA  Akimasa YOSHIDA  Keiji KIMURA  Hironori KASAHARA  

     
    PAPER

      Vol:
    E103-C No:3
      Page(s):
    98-109

    Utilization of local memory from real-time embedded systems to high performance systems with multi-core processors has become an important factor for satisfying hard deadline constraints. However, challenges lie in the area of efficiently managing the memory hierarchy, such as decomposing large data into small blocks to fit onto local memory and transferring blocks for reuse and replacement. To address this issue, this paper presents a compiler optimization method that automatically manage local memory of multi-core processors. The method selects and maps multi-dimensional data onto software specified memory blocks called Adjustable Blocks. These blocks are hierarchically divisible with varying sizes defined by the features of the input application. Moreover, the method introduces mapping structures called Template Arrays to maintain the indices of the decomposed multi-dimensional data. The proposed work is implemented on the OSCAR automatic parallelizing compiler and evaluations were performed on the Renesas RP2 8-core processor. Experimental results from NAS Parallel Benchmark, SPEC benchmark, and multimedia applications show the effectiveness of the method, obtaining maximum speed-ups of 20.44 with 8 cores utilizing local memory from single core sequential versions that use off-chip memory.

  • An Evolutionary Game for Analyzing Switching Behavior of Consumers in Electricity Retail Markets

    Ryo HASE  Norihiko SHINOMIYA  

     
    PAPER

      Vol:
    E103-A No:2
      Page(s):
    407-416

    Many countries have deregulated their electricity retail markets to offer lower electricity charges to consumers. However, many consumers have not switched their suppliers after the deregulation, and electricity suppliers do not tend to reduce their charges intensely. This paper proposes an electricity market model and evolutionary game to analyze the behavior of consumers in electricity retail markets. Our model focuses on switching costs such as an effort at switching, costs in searching for other alternatives, and so on. The evolutionary game examines whether consumers choose a strategy involving exploration of new alternatives with the searching costs as “cooperators” or not. Simulation results demonstrate that the share of cooperators was not improved by simply giving rewards for cooperators as compensation for searching costs. Furthermore, the results also suggest that the degree of cooperators in a network among consumers has a vital role in increasing the share of cooperators and switching rate.

  • A 28-GHz CMOS Vector-Summing Phase Shifter Featuring I/Q Imbalance Calibration Supporting 11.2Gb/s in 256QAM for 5G New Radio

    Jian PANG  Ryo KUBOZOE  Zheng LI  Masaru KAWABUCHI  Atsushi SHIRANE  Kenichi OKADA  

     
    PAPER-Electronic Circuits

      Pubricized:
    2019/08/19
      Vol:
    E103-C No:2
      Page(s):
    39-47

    Regarding the enlarged array size for the 5G new radio (NR) millimeter-wave phased-array transceivers, an improved phase tuning resolution will be required to support the accurate beam control. This paper introduces a CMOS implementation of an active vector-summing phase shifter. The proposed phase shifter realizes a 6-bit phase shifting with an active area of 0.32mm2. To minimize the gain variation during the phase tuning, a gain error compensation technique is proposed. After the compensation, the measured gain variation within the 5G NR band n257 is less than 0.9dB. The corresponding RMS gain error is less than 0.2dB. The measured RMS phase error from 26.5GHz to 29.5GHz is less than 1.2°. Gain-invariant, high-resolution phase tuning is realized by this work. Considering the error vector magnitude (EVM) performance, the proposed phase shifter supports a maximum data rate of 11.2Gb/s in 256QAM with a power consumption of 25.2mW.

  • Joint Energy-Efficiency and Throughput Optimization with Admission Control and Resource Allocation in Cognitive Radio Networks

    Jain-Shing LIU  Chun-Hung LIN  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2019/07/26
      Vol:
    E103-B No:2
      Page(s):
    139-147

    In this work, we address a joint energy efficiency (EE) and throughput optimization problem in interweave cognitive radio networks (CRNs) subject to scheduling, power, and stability constraints, which could be solved through traffic admission control, channel allocation, and power allocation. Specifically, the joint objective is to concurrently optimize the system EE and the throughput of secondary user (SU), while satisfying the minimum throughput requirement of primary user (PU), the throughput constraint of SU, and the scheduling and power control constraints that must be considered. To achieve these goals, our algorithm independently and simultaneously makes control decisions on admission and transmission to maximize a joint utility of EE and throughput under time-varying conditions of channel and traffic without a priori knowledge. Specially, the proposed scheduling algorithm has polynomial time efficiency, and the power control algorithms as well as the admission control algorithm involved are simply threshold-based and thus very computationally efficient. Finally, numerical analyses show that our proposals achieve both system stability and optimal utility.

  • Distributed Subgradient Method for Constrained Convex Optimization with Quantized and Event-Triggered Communication

    Naoki HAYASHI  Kazuyuki ISHIKAWA  Shigemasa TAKAI  

     
    PAPER

      Vol:
    E103-A No:2
      Page(s):
    428-434

    In this paper, we propose a distributed subgradient-based method over quantized and event-triggered communication networks for constrained convex optimization. In the proposed method, each agent sends the quantized state to the neighbor agents only at its trigger times through the dynamic encoding and decoding scheme. After the quantized and event-triggered information exchanges, each agent locally updates its state by a consensus-based subgradient algorithm. We show a sufficient condition for convergence under summability conditions of a diminishing step-size.

  • Anonymization Technique Based on SGD Matrix Factorization

    Tomoaki MIMOTO  Seira HIDANO  Shinsaku KIYOMOTO  Atsuko MIYAJI  

     
    PAPER-Cryptographic Techniques

      Pubricized:
    2019/11/25
      Vol:
    E103-D No:2
      Page(s):
    299-308

    Time-sequence data is high dimensional and contains a lot of information, which can be utilized in various fields, such as insurance, finance, and advertising. Personal data including time-sequence data is converted to anonymized datasets, which need to strike a balance between both privacy and utility. In this paper, we consider low-rank matrix factorization as one of anonymization methods and evaluate its efficiency. We convert time-sequence datasets to matrices and evaluate both privacy and utility. The record IDs in time-sequence data are changed at regular intervals to reduce re-identification risk. However, since individuals tend to behave in a similar fashion over periods of time, there remains a risk of record linkage even if record IDs are different. Hence, we evaluate the re-identification and linkage risks as privacy risks of time-sequence data. Our experimental results show that matrix factorization is a viable anonymization method and it can achieve better utility than existing anonymization methods.

  • A Family of New 16-QAM Golay Complementary Sequences without Higher PEP Upper Bounds

    Fanxin ZENG  Xiping HE  Guixin XUAN  Zhenyu ZHANG  Yanni PENG  Li YAN  

     
    LETTER-Information Theory

      Vol:
    E103-A No:2
      Page(s):
    547-552

    In an OFDM communication system using quadrature amplitude modulation (QAM) signals, peak envelope powers (PEPs) of the transmitted signals can be well controlled by using QAM Golay complementary sequence pairs (CSPs). In this letter, by making use of a new construction, a family of new 16-QAM Golay CSPs of length N=2m (integer m≥2) with binary inputs is presented, and all the resultant pairs have the PEP upper bound 2N. However, in the existing such pairs from other references their PEP upper bounds can arrive at 3.6N when the worst case happens. In this sense, novel pairs are good candidates for OFDM applications.

  • Shift Invariance Property of a Non-Negative Matrix Factorization

    Hideyuki IMAI  

     
    LETTER-General Fundamentals and Boundaries

      Vol:
    E103-A No:2
      Page(s):
    580-581

    We consider a property about a result of non-negative matrix factorization under a parallel moving of data points. The shape of a cloud of original data points and that of data points moving parallel to a vector are identical. Thus it is sometimes required that the coefficients to basis vectors of both data points are also identical from the viewpoint of classification. We show a necessary and sufficient condition for such an invariance property under a translation of the data points.

  • Consensus-Based Quantized Algorithm for Convex Optimization with Smooth Cost Functions

    Naoki HAYASHI  Yuichi KAJIYAMA  Shigemasa TAKAI  

     
    PAPER

      Vol:
    E103-A No:2
      Page(s):
    435-442

    This paper proposes a distributed algorithm over quantized communication networks for unconstrained optimization with smooth cost functions. We consider a multi-agent system whose local communication is represented by a fixed and connected graph. Each agent updates a state and an auxiliary variable for the estimates of the optimal solution and the average gradient of the entire cost function by a consensus-based optimization algorithm. The state and the auxiliary variable are sent to neighbor agents through a uniform quantizer. We show a convergence rate of the proposed algorithm with respect to the errors between the cost at the time-averaged state and the optimal cost. Numerical examples show that the estimated solution by the proposed quantized algorithm converges to the optimal solution.

  • A Release-Aware Bug Triaging Method Considering Developers' Bug-Fixing Loads

    Yutaro KASHIWA  Masao OHIRA  

     
    PAPER-Software Engineering

      Pubricized:
    2019/10/25
      Vol:
    E103-D No:2
      Page(s):
    348-362

    This paper proposes a release-aware bug triaging method that aims to increase the number of bugs that developers can fix by the next release date during open-source software development. A variety of methods have been proposed for recommending appropriate developers for particular bug-fixing tasks, but since these approaches only consider the developers' ability to fix the bug, they tend to assign many of the bugs to a small number of the project's developers. Since projects generally have a release schedule, even excellent developers cannot fix all the bugs that are assigned to them by the existing methods. The proposed method places an upper limit on the number of tasks which are assigned to each developer during a given period, in addition to considering the ability of developers. Our method regards the bug assignment problem as a multiple knapsack problem, finding the best combination of bugs and developers. The best combination is one that maximizes the efficiency of the project, while meeting the constraint where it can only assign as many bugs as the developers can fix during a given period. We conduct the case study, applying our method to bug reports from Mozilla Firefox, Eclipse Platform and GNU compiler collection (GCC). We find that our method has the following properties: (1) it can prevent the bug-fixing load from being concentrated on a small number of developers; (2) compared with the existing methods, the proposed method can assign a more appropriate amount of bugs that each developer can fix by the next release date; (3) it can reduce the time taken to fix bugs by 35%-41%, compared with manual bug triaging;

  • Knowledge Discovery from Layered Neural Networks Based on Non-negative Task Matrix Decomposition

    Chihiro WATANABE  Kaoru HIRAMATSU  Kunio KASHINO  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2019/10/23
      Vol:
    E103-D No:2
      Page(s):
    390-397

    Interpretability has become an important issue in the machine learning field, along with the success of layered neural networks in various practical tasks. Since a trained layered neural network consists of a complex nonlinear relationship between large number of parameters, we failed to understand how they could achieve input-output mappings with a given data set. In this paper, we propose the non-negative task matrix decomposition method, which applies non-negative matrix factorization to a trained layered neural network. This enables us to decompose the inference mechanism of a trained layered neural network into multiple principal tasks of input-output mapping, and reveal the roles of hidden units in terms of their contribution to each principal task.

  • Decentralized Supervisory Control of Timed Discrete Event Systems with Conditional Decisions for Enforcing Forcible Events

    Shimpei MIURA  Shigemasa TAKAI  

     
    PAPER

      Vol:
    E103-A No:2
      Page(s):
    417-427

    In this paper, we introduce conditional decisions for enforcing forcible events in the decentralized supervisory control framework for timed discrete event systems. We first present sufficient conditions for the existence of a decentralized supervisor with conditional decisions. These sufficient conditions are weaker than the necessary and sufficient conditions for the existence of a decentralized supervisor without conditional decisions. We next show that the presented sufficient conditions are also necessary under the assumption that if the occurrence of the event tick, which represents the passage of one time unit, is illegal, then a legal forcible event that should be forced to occur uniquely exists. In addition, we develop a method for verifying the presented conditions under the same assumption.

  • Cloud Annealing: A Novel Simulated Annealing Algorithm Based on Cloud Model

    Shanshan JIAO  Zhisong PAN  Yutian CHEN  Yunbo LI  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2019/09/27
      Vol:
    E103-D No:1
      Page(s):
    85-92

    As one of the most popular intelligent optimization algorithms, Simulated Annealing (SA) faces two key problems, the generation of perturbation solutions and the control strategy of the outer loop (cooling schedule). In this paper, we introduce the Gaussian Cloud model to solve both problems and propose a novel cloud annealing algorithm. Its basic idea is to use the Gaussian Cloud model with decreasing numerical character He (Hyper-entropy) to generate new solutions in the inner loop, while He essentially indicates a heuristic control strategy to combine global random search of the outer loop and local tuning search of the inner loop. Experimental results in function optimization problems (i.e. single-peak, multi-peak and high dimensional functions) show that, compared with the simple SA algorithm, the proposed cloud annealing algorithm will lead to significant improvement on convergence and the average value of obtained solutions is usually closer to the optimal solution.

  • Mode Normalization Enhanced Recurrent Model for Multi-Modal Semantic Trajectory Prediction

    Shaojie ZHU  Lei ZHANG  Bailong LIU  Shumin CUI  Changxing SHAO  Yun LI  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2019/10/04
      Vol:
    E103-D No:1
      Page(s):
    174-176

    Multi-modal semantic trajectory prediction has become a new challenge due to the rapid growth of multi-modal semantic trajectories with text message. Traditional RNN trajectory prediction methods have the following problems to process multi-modal semantic trajectory. The distribution of multi-modal trajectory samples shifts gradually with training. It leads to difficult convergency and long training time. Moreover, each modal feature shifts in different directions, which produces multiple distributions of dataset. To solve the above problems, MNERM (Mode Normalization Enhanced Recurrent Model) for multi-modal semantic trajectory is proposed. MNERM embeds multiple modal features together and combines the LSTM network to capture long-term dependency of trajectory. In addition, it designs Mode Normalization mechanism to normalize samples with multiple means and variances, and each distribution normalized falls into the action area of the activation function, so as to improve the prediction efficiency while improving greatly the training speed. Experiments on real dataset show that, compared with SERM, MNERM reduces the sensitivity of learning rate, improves the training speed by 9.120 times, increases HR@1 by 0.03, and reduces the ADE by 120 meters.

541-560hit(5900hit)