The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Z(5900hit)

461-480hit(5900hit)

  • DVNR: A Distributed Method for Virtual Network Recovery

    Guangyuan LIU  Daokun CHEN  

     
    LETTER-Information Network

      Pubricized:
    2020/08/26
      Vol:
    E103-D No:12
      Page(s):
    2713-2716

    How to restore virtual network against substrate network failure (e.g. link cut) is one of the key challenges of network virtualization. The traditional virtual network recovery (VNR) methods are mostly based on the idea of centralized control. However, if multiple virtual networks fail at the same time, their recovery processes are usually queued according to a specific priority, which may increase the average waiting time of users. In this letter, we study distributed virtual network recovery (DVNR) method to improve the virtual network recovery efficiency. We establish exclusive virtual machine (VM) for each virtual network and process recovery requests of multiple virtual networks in parallel. Simulation results show that the proposed DVNR method can obtain recovery success rate closely to centralized VNR method while yield ~70% less average recovery time.

  • Tweakable TWINE: Building a Tweakable Block Cipher on Generalized Feistel Structure

    Kosei SAKAMOTO  Kazuhiko MINEMATSU  Nao SHIBATA  Maki SHIGERI  Hiroyasu KUBO  Yuki FUNABIKI  Andrey BOGDANOV  Sumio MORIOKA  Takanori ISOBE  

     
    PAPER-Cryptography and Information Security

      Vol:
    E103-A No:12
      Page(s):
    1629-1639

    Tweakable block cipher (TBC) is an extension of conventional block cipher. We study how to build a TBC based on generalized Feistel structure (GFS), a classical block cipher construction. While known dedicated TBC proposals are based on substitution-permutation network (SPN), GFS has not been used for building TBC. In particular, we take 64-bit GFS block cipher TWINE and try to make it tweakable with a minimum change. To find a best one from a large number of candidates, we performed a comprehensive search with a help of mixed integer linear programming (MILP) solver. As a result, our proposal TWINE is quite efficient, has the same number of rounds as TWINE with extremely simple tweak schedule.

  • A Multiobjective Optimization Dispatch Method of Wind-Thermal Power System

    Xiaoxuan GUO  Renxi GONG  Haibo BAO  Zhenkun LU  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2020/09/18
      Vol:
    E103-D No:12
      Page(s):
    2549-2558

    It is well known that the large-scale access of wind power to the power system will affect the economic and environmental objectives of power generation scheduling, and also bring new challenges to the traditional deterministic power generation scheduling because of the intermittency and randomness of wind power. In order to deal with these problems, a multiobjective optimization dispatch method of wind-thermal power system is proposed. The method can be described as follows: A multiobjective interval power generation scheduling model of wind-thermal power system is firstly established by describing the wind speed on wind farm as an interval variable, and the minimization of fuel cost and pollution gas emission cost of thermal power unit is chosen as the objective functions. And then, the optimistic and pessimistic Pareto frontiers of the multi-objective interval power generation scheduling are obtained by utilizing an improved normal boundary intersection method with a normal boundary intersection (NBI) combining with a bilevel optimization method to solve the model. Finally, the optimistic and pessimistic compromise solutions is determined by a distance evaluation method. The calculation results of the 16-unit 174-bus system show that by the proposed method, a uniform optimistic and pessimistic Pareto frontier can be obtained, the analysis of the impact of wind speed interval uncertainty on the economic and environmental indicators can be quantified. In addition, it has been verified that the Pareto front in the actual scenario is distributed between the optimistic and pessimistic Pareto front, and the influence of different wind power access levels on the optimistic and pessimistic Pareto fronts is analyzed.

  • Corrected Stochastic Dual Coordinate Ascent for Top-k SVM

    Yoshihiro HIROHASHI  Tsuyoshi KATO  

     
    PAPER-Pattern Recognition

      Pubricized:
    2020/08/06
      Vol:
    E103-D No:11
      Page(s):
    2323-2331

    Currently, the top-k error ratio is one of the primary methods to measure the accuracy of multi-category classification. Top-k multiclass SVM was designed to minimize the empirical risk based on the top-k error ratio. Two SDCA-based algorithms exist for learning the top-k SVM, both of which have several desirable properties for achieving optimization. However, both algorithms suffer from a serious disadvantage, that is, they cannot attain the optimal convergence in most cases owing to their theoretical imperfections. As demonstrated through numerical simulations, if the modified SDCA algorithm is employed, optimal convergence is always achieved, in contrast to the failure of the two existing SDCA-based algorithms. Finally, our analytical results are presented to clarify the significance of these existing algorithms.

  • On the Calculation of the G-MGF for Two-Ray Fading Model with Its Applications in Communications

    Jinu GONG  Hoojin LEE  Rumin YANG  Joonhyuk KANG  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2020/05/15
      Vol:
    E103-A No:11
      Page(s):
    1308-1311

    Two-ray (TR) fading model is one of the fading models to represent a worst-case fading scenario. We derive the exact closed-form expressions of the generalized moment generating function (G-MGF) for the TR fading model, which enables us to analyze the numerous types of wireless communication applications. Among them, we carry out several analytical results for the TR fading model, including the exact ergodic capacity along with asymptotic expressions and energy detection performance. Finally, we provide numerical results to validate our evaluations.

  • Comparison of Optical Transport Technologies for Centralized Radio Access Network Using Optical Ground Wire Open Access

    Kensuke IKEDA  Christina LIM  Ampalavanapillai NIRMALATHAS  Chathurika RANAWEERA  

     
    PAPER

      Pubricized:
    2020/05/22
      Vol:
    E103-B No:11
      Page(s):
    1240-1248

    Communication networks for wide-scale distributed energy resources (DERs) including photovoltaics (PVs), wind, storage and battery systems and electric vehicles (EVs) will be indispensable in future power grids. In this paper, we compare optical fronthaul networks using existing optical ground wires (OPGWs) for centralized radio access network (C-RAN) architecture to realize cost effective wireless communication network expansion including low population area. We investigate the applicability of optical data transport technologies of physical layer split (PLS), analog radio-on-fiber (ARoF), and common public radio interface (CPRI). The deployment costs of them are comparatively analyzed. It was shown that physical layer split and analog radio-on-fiber with subcarrier multiplexing (SCM) result in lower cost than other technologies.

  • Concatenated LDPC/Trellis Codes: Surpassing the Symmetric Information Rate of Channels with Synchronization Errors

    Ryo SHIBATA  Gou HOSOYA  Hiroyuki YASHIMA  

     
    PAPER-Coding Theory

      Pubricized:
    2020/09/03
      Vol:
    E103-A No:11
      Page(s):
    1283-1291

    We propose a coding/decoding strategy that surpasses the symmetric information rate of a binary insertion/deletion (ID) channel and approaches the Markov capacity of the channel. The proposed codes comprise inner trellis codes and outer irregular low-density parity-check (LDPC) codes. The trellis codes are designed to mimic the transition probabilities of a Markov input process that achieves a high information rate, whereas the LDPC codes are designed to maximize an iterative decoding threshold in the superchannel (concatenation of the ID channels and trellis codes).

  • Example Phrase Adaptation Method for Customized, Example-Based Dialog System Using User Data and Distributed Word Representations

    Norihide KITAOKA  Eichi SETO  Ryota NISHIMURA  

     
    PAPER-Speech and Hearing

      Pubricized:
    2020/07/30
      Vol:
    E103-D No:11
      Page(s):
    2332-2339

    We have developed an adaptation method which allows the customization of example-based dialog systems for individual users by applying “plus” and “minus” operations to the distributed representations obtained using the word2vec method. After retrieving user-related profile information from the Web, named entity extraction is applied to the retrieval results. Words with a high term frequency-inverse document frequency (TF-IDF) score are then adopted as user related words. Next, we calculate the similarity between the distrubuted representations of selected user-related words and nouns in the existing example phrases, using word2vec embedding. We then generate phrases adapted to the user by substituting user-related words for highly similar words in the original example phrases. Word2vec also has a special property which allows the arithmetic operations “plus” and “minus” to be applied to distributed word representations. By applying these operations to words used in the original phrases, we are able to determine which user-related words can be used to replace the original words. The user-related words are then substituted to create customized example phrases. We evaluated the naturalness of the generated phrases and found that the system could generate natural phrases.

  • Study on Silicon-Based Polarization Converter Using Asymmetric Slot Waveguide

    Zejun ZHANG  Yasuhide TSUJI  Masashi EGUCHI  Chun-ping CHEN  

     
    BRIEF PAPER

      Pubricized:
    2020/05/01
      Vol:
    E103-C No:11
      Page(s):
    605-608

    A compact optical polarization converter (PC) based on slot waveguide has been proposed in this study. Utilizing the high refractive index contrast between a Si waveguide and SiO2 cladding on the silicon-on-insulator platform, the light beam can be strongly confined in a slot waveguide structure. The proposed PC consists of a square waveguide and an L-shape cover waveguide. Since the overall structure is symmetrically distributed along the axis rotated 45-degree from the horizontal direction, the optical axis of this PC lies in the direction with equi-angle from two orthogonally polarized modes of the input and output ends, which leads to a high polarization conversion efficiency (PCE). 3D FDTD simulation results illustrate that a TE-to-TM mode conversion is achieved with a device length of 8.2 µm, and the PCE exceeds 99.8%. The structural tolerance and wavelength dependence of the PC have also been discussed in detail.

  • Non-Linear Distance Filter for Modeling Effect of a Large Pointer Used in a Gesture-Based Pointing Interface

    Kazuaki KONDO  Takuto FUJIWARA  Yuichi NAKAMURA  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2020/08/03
      Vol:
    E103-D No:11
      Page(s):
    2302-2313

    When using a gesture-based interface for pointing to targets on a wide screen, displaying a large pointer instead of a typical spot pattern reduces disturbance caused by measurement errors of user's pointing posture. However, it remains unclear why a large pointer helps facilitate easy pointing. To examine this issue, in this study we propose a mathematical model that formulates human pointing motions affected by a large pointer. Our idea is to describe the effect of the large pointer as human visual perception, because the user will perceive the pointer-target distance as being shorter than it actually is. We embedded this scheme, referred to as non-linear distance filter (NDF), into a typical feedback loop model designed to formulate human pointing motions. We also proposed a method to estimate NDF mapping from pointing trajectories, and used it to investigate the applicability of the model under three typical disturbance patterns: small vibration, smooth shift, and step signal. Experimental results demonstrated that the proposed NDF-based model could accurately reproduced actual pointing trajectories, achieving high similarity values of 0.89, 0.97, and 0.91 for the three respective disturbance patterns. The results indicate the applicability of the proposed method. In addition, we confirmed that the obtained NDF mappings suggested rationales for why a large pointer helps facilitate easy pointing.

  • Speech Chain VC: Linking Linguistic and Acoustic Levels via Latent Distinctive Features for RBM-Based Voice Conversion

    Takuya KISHIDA  Toru NAKASHIKA  

     
    PAPER-Speech and Hearing

      Pubricized:
    2020/08/06
      Vol:
    E103-D No:11
      Page(s):
    2340-2350

    This paper proposes a voice conversion (VC) method based on a model that links linguistic and acoustic representations via latent phonological distinctive features. Our method, called speech chain VC, is inspired by the concept of the speech chain, where speech communication consists of a chain of events linking the speaker's brain with the listener's brain. We assume that speaker identity information, which appears in the acoustic level, is embedded in two steps — where phonological information is encoded into articulatory movements (linguistic to physiological) and where articulatory movements generate sound waves (physiological to acoustic). Speech chain VC represents these event links by using an adaptive restricted Boltzmann machine (ARBM) introducing phoneme labels and acoustic features as two classes of visible units and latent phonological distinctive features associated with articulatory movements as hidden units. Subjective evaluation experiments showed that intelligibility of the converted speech significantly improved compared with the conventional ARBM-based method. The speaker-identity conversion quality of the proposed method was comparable to that of a Gaussian mixture model (GMM)-based method. Analyses on the representations of the hidden layer of the speech chain VC model supported that some of the hidden units actually correspond to phonological distinctive features. Final part of this paper proposes approaches to achieve one-shot VC by using the speech chain VC model. Subjective evaluation experiments showed that when a target speaker is the same gender as a source speaker, the proposed methods can achieve one-shot VC based on each single source and target speaker's utterance.

  • Electro-Optic Modulator for Compensation of Third-Order Intermodulation Distortion Using Frequency Chirp Modulation

    Daichi FURUBAYASHI  Yuta KASHIWAGI  Takanori SATO  Tadashi KAWAI  Akira ENOKIHARA  Naokatsu YAMAMOTO  Tetsuya KAWANISHI  

     
    PAPER

      Pubricized:
    2020/06/05
      Vol:
    E103-C No:11
      Page(s):
    653-660

    A new structure of the electro-optic modulator to compensate the third-order intermodulation distortion (IMD3) is introduced. The modulator includes two Mach-Zehnder modulators (MZMs) operating with frequency chirp and the two modulated outputs are combined with an adequate phase difference. We revealed by theoretical analysis and numerical calculations that the IMD3 components in the receiver output could be selectively suppressed when the two MZMs operate with chirp parameters of opposite signs to each other. Spectral power of the IMD3 components in the proposed modulator was more than 15dB lower than that in a normal Mach-Zehnder modulator at modulation index between 0.15π and 0.25π rad. The IMD3 compensation properties of the proposed modulator was experimentally confirmed by using a dual parallel Mach-Zehnder modulator (DPMZM) structure. We designed and fabricated the modulator with the single-chip structure and the single-input operation by integrating with 180° hybrid coupler on the modulator substrate. Modulation signals were applied to each modulation electrode by the 180° hybrid coupler to set the chirp parameters of two MZMs of the DPMZM. The properties of the fabricated modulator were measured by using 10GHz two-tone signals. The performance of the IMD3 compensation agreed with that in the calculation. It was confirmed that the IMD3 compensation could be realized even by the fabricated modulator structure.

  • A Study on Function-Expansion-Based Topology Optimization without Gray Area for Optimal Design of Photonic Devices

    Masato TOMIYASU  Keita MORIMOTO  Akito IGUCHI  Yasuhide TSUJI  

     
    PAPER

      Pubricized:
    2020/04/09
      Vol:
    E103-C No:11
      Page(s):
    560-566

    In this paper, we reformulate a sensitivity analysis method for function-expansion-based topology optimization method without using gray area. In the conventional approach based on function expansion method, permittivity distribution contains gray materials, which are intermediate materials between core and cladding ones, so as to let the permittivity differentiable with respect to design variables. Since this approach using gray area dose not express material boundary exactly, it is not desirable to apply this approach to design problems of strongly guiding waveguide devices, especially for plasmonic waveguides. In this study, we present function-expansion-method-based topology optimization without gray area. In this approach, use of gray area can be avoided by replacing the area integral of the derivative of the matrix with the line integral taking into acount the rate of boundary deviation with respect to design variables. We verify the validity of our approach through applying it to design problems of a T-branching power splitter and a mode order converter.

  • Fundamental Investigation of a Grating Consisting of InSb-Coated Dielectric Cylinders on a Substrate in the THz Regime

    Jun SHIBAYAMA  Sumire TAKAHASHI  Junji YAMAUCHI  Hisamatsu NAKANO  

     
    PAPER

      Pubricized:
    2020/03/24
      Vol:
    E103-C No:11
      Page(s):
    567-574

    A grating consisting of a periodic array of InSb-coated dielectric cylinders on a substrate is analyzed at THz frequencies using the frequency-dependent finite-difference time-domain method based on the trapezoidal recursive convolution technique. The transmission characteristics of an infinite periodic array are investigated not only at normal incidence but also at oblique incidence. The incident field is shown to be coupled to the substrate due to the guided-mode resonance (GMR), indicating the practical application of a grating coupler. For the sensor application, the frequency shift of the transmission dip is investigated with attention to the variation of the background refractive index. It is found that the shift of the dip involving the surface plasmon resonance is almost ten times as large as that of the dip only from the GMR. We finally analyze a finite periodic array of the cylinders. The field radiation from the array is discussed, when the field propagates through the substrate. It is shown that the radiation direction can be controlled with the frequency of the propagating field.

  • Estimation of Switching Loss and Voltage Overshoot of Active Gate Driver by Neural Network

    Satomu YASUDA  Yukihisa SUZUKI  Keiji WADA  

     
    BRIEF PAPER

      Pubricized:
    2020/05/01
      Vol:
    E103-C No:11
      Page(s):
    609-612

    An active gate driver IC generates arbitrary switching waveform is proposed to reduce the switching loss, the voltage overshoot, and the electromagnetic interference (EMI) by optimizing the switching pattern. However, it is hard to find optimal switching pattern because the switching pattern has huge possible combinations. In this paper, the method to estimate the switching loss and the voltage overshoot from the switching pattern with neural network (NN) is proposed. The implemented NN model obtains reasonable learning results for data-sets.

  • High-Speed-Operation of All-Silicon Lumped-Electrode Modulator Integrated with Passive Equalizer Open Access

    Yohei SOBU  Shinsuke TANAKA  Yu TANAKA  

     
    INVITED PAPER

      Pubricized:
    2020/05/15
      Vol:
    E103-C No:11
      Page(s):
    619-626

    Silicon photonics technology is a promising candidate for small form factor transceivers that can be used in data-center applications. This technology has a small footprint, a low fabrication cost, and good temperature immunity. However, its main challenge is due to the high baud rate operation for optical modulators with a low power consumption. This paper investigates an all-Silicon Mach-Zehnder modulator based on the lumped-electrode optical phase shifters. These phase shifters are driven by a complementary metal oxide semiconductor (CMOS) inverter driver to achieve a low power optical transmitter. This architecture improves the power efficiency because an electrical digital-to-analog converter (DAC) and a linear driver are not required. In addition, the current only flows at the time of data transition. For this purpose, we use a PIN-diode phase shifter. These phase shifters have a large capacitance so the driving voltage can be reduced while maintaining an optical phase shift. On the other hand, this study integrates a passive resistance-capacitance (RC) equalizer with a PIN-phase shifter to expand the electro-optic (EO) bandwidth of a modulator. Therefore, the modulation efficiency and the EO bandwidth can be optimized by designing the capacitor of the RC equalizer. This paper reviews the recent progress for the high-speed operation of an all-Si PIN-RC modulator. This study introduces a metal-insulator-metal (MIM) structure for a capacitor with a passive RC equalizer to obtain a wider EO bandwidth. As a result, this investigation achieves an EO bandwidth of 35.7-37 GHz and a 70 Gbaud NRZ operation is confirmed.

  • Study on Analysis and Fabrication Conditions of Horizontal SiO2 Slot Waveguides Using Nb2O5

    Yoshiki HAYAMA  Katsumi NAKATSUHARA  Shinta UCHIBORI  Takeshi NISHIZAWA  

     
    PAPER

      Pubricized:
    2020/06/05
      Vol:
    E103-C No:11
      Page(s):
    669-678

    Horizontal slot waveguides enable light to be strongly confined in thin regions. The strong confinement of light in the slot region offers the advantages of enhancing the interaction of light with matter and providing highly sensitive sensing devices. We theoretically investigated fundamental characteristics of horizontal slot waveguides using Nb2O5. The coupling coefficient between SiO2 slot and air slot waveguides was calculated. Characteristics of bending loss in slot waveguide were also analyzed. The etching conditions in reactive ion etching needed to obtain a sidewall with high verticality were studied. We propose a process for fabricating horizontal slot waveguides using Nb2O5 thin film deposition and selective etching of SiO2. Horizontal slot waveguides were fabricated that had an SiO2 slot of less than 30 nm SiO2. The propagated light passing through the slot waveguides was also obtained.

  • Contextualized Character Embedding with Multi-Sequence LSTM for Automatic Word Segmentation

    Hyunyoung LEE  Seungshik KANG  

     
    PAPER-Natural Language Processing

      Pubricized:
    2020/08/19
      Vol:
    E103-D No:11
      Page(s):
    2371-2378

    Contextual information is a crucial factor in natural language processing tasks such as sequence labeling. Previous studies on contextualized embedding and word embedding have explored the context of word-level tokens in order to obtain useful features of languages. However, unlike it is the case in English, the fundamental task in East Asian languages is related to character-level tokens. In this paper, we propose a contextualized character embedding method using n-gram multi-sequences information with long short-term memory (LSTM). It is hypothesized that contextualized embeddings on multi-sequences in the task help each other deal with long-term contextual information such as the notion of spans and boundaries of segmentation. The analysis shows that the contextualized embedding of bigram character sequences encodes well the notion of spans and boundaries for word segmentation rather than that of unigram character sequences. We find out that the combination of contextualized embeddings from both unigram and bigram character sequences at output layer rather than the input layer of LSTMs improves the performance of word segmentation. The comparison showed that our proposed method outperforms the previous models.

  • Available Spectral Space in C-Band Expansion Remaining After Optical Quantization Based on Intensity-to-Lambda Conversion Open Access

    Yuta KAIHORI  Yu YAMASAKI  Tsuyoshi KONISHI  

     
    INVITED PAPER

      Pubricized:
    2020/05/14
      Vol:
    E103-B No:11
      Page(s):
    1206-1213

    A high degree of freedom in spectral domain allows us to accommodate additional optical signal processing for wavelength division multiplexing in photonic analog-to-digital conversion. We experimentally verified a spectral compression to save a necessary bandwidth for soliton self-frequency shift based optical quantization through the cascade of the four-wave mixing based and the sum-frequency generation based spectral compression. This approach can realize 0.03 nm individual bandwidth correspond to save up to more than 85 percent of bandwidth for 7-bit optical quantization in C-band.

  • Design and Construction of Irregular LDPC Codes for Channels with Synchronization Errors: New Aspect of Degree Profiles

    Ryo SHIBATA  Gou HOSOYA  Hiroyuki YASHIMA  

     
    PAPER-Coding Theory

      Pubricized:
    2020/04/08
      Vol:
    E103-A No:10
      Page(s):
    1237-1247

    Over the past two decades, irregular low-density parity-check (LDPC) codes have not been able to decode information corrupted by insertion and deletion (ID) errors without markers. In this paper, we bring to light the existence of irregular LDPC codes that approach the symmetric information rates (SIR) of the channel with ID errors, even without markers. These codes have peculiar shapes in their check-node degree distributions. Specifically, the check-node degrees are scattered and there are degree-2 check nodes. We propose a code construction method based on the progressive edge-growth algorithm tailored for the scattered check-node degree distributions, which enables the SIR-approaching codes to progress in the finite-length regime. Moreover, the SIR-approaching codes demonstrate asymptotic and finite-length performance that outperform the existing counterparts, namely, concatenated coding of irregular LDPC codes with markers and spatially coupled LDPC codes.

461-480hit(5900hit)