The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Z(5900hit)

341-360hit(5900hit)

  • Single Image Dehazing Algorithm Based on Modified Dark Channel Prior

    Hao ZHOU  Zhuangzhuang ZHANG  Yun LIU  Meiyan XUAN  Weiwei JIANG  Hailing XIONG  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/07/14
      Vol:
    E104-D No:10
      Page(s):
    1758-1761

    Single image dehazing algorithm based on Dark Channel Prior (DCP) is widely known. More and more image dehazing algorithms based on DCP have been proposed. However, we found that it is more effective to use DCP in the RAW images before the ISP pipeline. In addition, for the problem of DCP failure in the sky area, we propose an algorithm to segment the sky region and compensate the transmission. Extensive experimental results on both subjective and objective evaluation demonstrate that the performance of the modified DCP (MDCP) has been greatly improved, and it is competitive with the state-of-the-art methods.

  • Noisy Localization Annotation Refinement for Object Detection

    Jiafeng MAO  Qing YU  Kiyoharu AIZAWA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2021/05/25
      Vol:
    E104-D No:9
      Page(s):
    1478-1485

    Well annotated dataset is crucial to the training of object detectors. However, the production of finely annotated datasets for object detection tasks is extremely labor-intensive, therefore, cloud sourcing is often used to create datasets, which leads to these datasets tending to contain incorrect annotations such as inaccurate localization bounding boxes. In this study, we highlight a problem of object detection with noisy bounding box annotations and show that these noisy annotations are harmful to the performance of deep neural networks. To solve this problem, we further propose a framework to allow the network to modify the noisy datasets by alternating refinement. The experimental results demonstrate that our proposed framework can significantly alleviate the influences of noise on model performance.

  • Convex and Differentiable Formulation for Inverse Problems in Hilbert Spaces with Nonlinear Clipping Effects Open Access

    Natsuki UENO  Shoichi KOYAMA  Hiroshi SARUWATARI  

     
    PAPER-Nonlinear Problems

      Pubricized:
    2021/02/25
      Vol:
    E104-A No:9
      Page(s):
    1293-1303

    We propose a useful formulation for ill-posed inverse problems in Hilbert spaces with nonlinear clipping effects. Ill-posed inverse problems are often formulated as optimization problems, and nonlinear clipping effects may cause nonconvexity or nondifferentiability of the objective functions in the case of commonly used regularized least squares. To overcome these difficulties, we present a tractable formulation in which the objective function is convex and differentiable with respect to optimization variables, on the basis of the Bregman divergence associated with the primitive function of the clipping function. By using this formulation in combination with the representer theorem, we need only to deal with a finite-dimensional, convex, and differentiable optimization problem, which can be solved by well-established algorithms. We also show two practical examples of inverse problems where our theory can be applied, estimation of band-limited signals and time-harmonic acoustic fields, and evaluate the validity of our theory by numerical simulations.

  • A Study on Extreme Wideband 6G Radio Access Technologies for Achieving 100Gbps Data Rate in Higher Frequency Bands Open Access

    Satoshi SUYAMA  Tatsuki OKUYAMA  Yoshihisa KISHIYAMA  Satoshi NAGATA  Takahiro ASAI  

     
    INVITED PAPER

      Pubricized:
    2021/04/01
      Vol:
    E104-B No:9
      Page(s):
    992-999

    In sixth-generation (6G) mobile communication system, it is expected that extreme high data rate communication with a peak data rate over 100Gbps should be provided by exploiting higher frequency bands in addition to millimeter-wave bands such as 28GHz. The higher frequency bands are assumed to be millimeter wave and terahertz wave where the extreme wider bandwidth is available compared with 5G, and hence 6G needs to promote research and development to exploit so-called terahertz wave targeting the frequency from 100GHz to 300GHz. In the terahertz wave, there are fundamental issues that rectilinearity and pathloss are higher than those in the 28GHz band. In order to solve these issues, it is very important to clarify channel characteristics of the terahertz wave and establish a channel model, to advance 6G radio access technologies suitable for the terahertz wave based on the channel model, and to develop radio-frequency device technologies for such higher frequency bands. This paper introduces a direction of studies on 6G radio access technologies to explore the higher frequency bands and technical issues on the device technologies, and then basic computer simulations in 100Gbps transmission using 100GHz band clarify a potential of extreme high data rate over 100Gbps.

  • Counting Convex and Non-Convex 4-Holes in a Point Set

    Young-Hun SUNG  Sang Won BAE  

     
    PAPER-Algorithms and Data Structures

      Pubricized:
    2021/03/18
      Vol:
    E104-A No:9
      Page(s):
    1094-1100

    In this paper, we present an algorithm that counts the number of empty quadrilaterals whose corners are chosen from a given set S of n points in general position. Our algorithm can separately count the number of convex or non-convex empty quadrilaterals in O(T) time, where T denotes the number of empty triangles in S. Note that T varies from Ω(n2) and O(n3) and the expected value of T is known to be Θ(n2) when the n points in S are chosen uniformly and independently at random from a convex and bounded body in the plane. We also show how to enumerate all convex and/or non-convex empty quadrilaterals in S in time proportional to the number of reported quadrilaterals, after O(T)-time preprocessing.

  • Optical CDMA Scheme Using Generalized Modified Prime Sequence Codes and Extended Bi-Orthogonal Codes Open Access

    Kyohei ONO  Shoichiro YAMASAKI  Shinichiro MIYAZAKI  Tomoko K. MATSUSHIMA  

     
    PAPER-Spread Spectrum Technologies and Applications

      Pubricized:
    2021/03/08
      Vol:
    E104-A No:9
      Page(s):
    1329-1338

    Optical code-division multiple-access (CDMA) techniques provide multi-user data transmission services in optical wireless and fiber communication systems. Several signature codes, such as modified prime sequence codes (MPSCs), generalized MPSCs (GMPSCs) and modified pseudo-orthogonal M-sequence sets, have been proposed for synchronous optical CDMA systems. In this paper, a new scheme is proposed for synchronous optical CDMA to increase the number of users and, consequently, to increase the total data rate without increasing the chip rate. The proposed scheme employs a GMPSC and an extended bi-orthogonal code which is a unipolar code generated from a bipolar Walsh code. Comprehensive comparisons between the proposed scheme and several conventional schemes are shown. Moreover, bit error rate performance and energy efficiency of the proposed scheme are evaluated comparing with those of the conventional optical CDMA schemes under atmospheric propagation environment.

  • Indoor Crowd Estimation Scheme Using the Number of Wi-Fi Probe Requests under MAC Address Randomization

    Yuki FURUYA  Hiromu ASAHINA  Masashi YOSHIDA  Iwao SASASE  

     
    PAPER-Information Network

      Pubricized:
    2021/06/18
      Vol:
    E104-D No:9
      Page(s):
    1420-1426

    As smartphones have become widespread in the past decade, Wi-Fi signal-based crowd estimation schemes are receiving increased attention. These estimation schemes count the number of unique MAC addresses in Wi-Fi signals, hereafter called probe requests (PRs), instead of counting the number of people. However, these estimation schemes have low accuracy of crowd estimation under MAC address randomization that replaces a unique MAC address with various dummy MAC addresses. To solve this problem, in this paper, we propose an indoor crowd estimation scheme using the number of PRs under MAC address randomization. The main idea of the proposed scheme is to leverage the fact that the number of PRs per a unit of time changes in proportion to the number of smartphones. Since a smartphone tends to send a constant number of PRs per a unit of time, the proposed scheme can estimate the accurate number of smartphones. Various experiment results show that the proposed scheme reduces estimation error by at most 75% compared to the conventional Wi-Fi signal-based crowd estimation scheme in an indoor environment.

  • Dynamic Terminal Connection Control Using Multi-Radio Unlicensed Access for 5G Evolution and Beyond

    Toshiro NAKAHIRA  Tomoki MURAKAMI  Hirantha ABEYSEKERA  Koichi ISHIHARA  Motoharu SASAKI  Takatsune MORIYAMA  Yasushi TAKATORI  

     
    PAPER

      Pubricized:
    2021/03/23
      Vol:
    E104-B No:9
      Page(s):
    1138-1146

    In this paper, we examine techniques for improving the throughput of unlicensed radio systems such as wireless LANs (WLANs) to take advantage of multi-radio access to mobile broadband, which will be important in 5G evolution and beyond. In WLANs, throughput is reduced due to mixed standards and the degraded quality of certain frequency channels, and thus control techniques and an architecture that provide efficient control over WLANs are needed to solve the problem. We have proposed a technique to control the terminal connection dynamically by using the multi-radio of the AP. Furthermore, we have proposed a new control architecture called WiSMA for efficient control of WLANs. Experiments show that the proposed method can solve those problems and improve the WLAN throughput.

  • Automatic Drawing of Complex Metro Maps

    Masahiro ONDA  Masaki MORIGUCHI  Keiko IMAI  

     
    PAPER-Graphs and Networks

      Pubricized:
    2021/03/08
      Vol:
    E104-A No:9
      Page(s):
    1150-1155

    The Tokyo subway is one of the most complex subway networks in the world and it is difficult to compute a visually readable metro map using existing layout methods. In this paper, we present a new method that can generate complex metro maps such as the Tokyo subway network. Our method consists of two phases. The first phase generates rough metro maps. It decomposes the metro networks into smaller subgraphs and partially generates rough metro maps. In the second phase, we use a local search technique to improve the aesthetic quality of the rough metro maps. The experimental results including the Tokyo metro map are shown.

  • Frequency-Domain Iterative Block DFE Using Erasure Zones and Improved Parameter Estimation

    Jian-Yu PAN  Kuei-Chiang LAI  Yi-Ting LI  Szu-Lin SU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/03/22
      Vol:
    E104-B No:9
      Page(s):
    1159-1171

    Iterative block decision feedback equalization with hard-decision feedback (HD-IBDFE) was proposed for single-carrier transmission with frequency-domain equalization (SC-FDE). The detection performance hinges upon not only error propagation, but also the accuracy of estimating the parameters used to re-compute the equalizer coefficients at each iteration. In this paper, we use the erasure zone (EZ) to de-emphasize the feedback values when the hard decisions are not reliable. EZ use also enables a more accurate, and yet computationally more efficient, parameter estimation method than HD-IBDFE. We show that the resulting equalizer coefficients share the same mathematical form as that of the HD-IBDFE, thereby preserving the merit of not requiring matrix inverse operations in calculating the equalizer coefficients. Simulations show that, by using the EZ and the proposed parameter estimation method, a significant performance improvement over the conventional HD-IBDFE can be achieved, but with lower complexity.

  • Physical Cell ID Detection Using Joint Estimation of Frequency Offset and SSS Sequence for NR Initial Access

    Daisuke INOUE  Kyogo OTA  Mamoru SAWAHASHI  Satoshi NAGATA  

     
    PAPER

      Pubricized:
    2021/03/17
      Vol:
    E104-B No:9
      Page(s):
    1120-1128

    This paper proposes a physical-layer cell identity (PCID) detection method that uses joint estimation of the frequency offset and secondary synchronization signal (SSS) sequence for the 5G new radio (NR) initial access with beamforming transmission at a base station. Computer simulation results show that using the PCID detection method with the proposed joint estimation yields an almost identical PCID detection probability as the primary synchronization signal (PSS) detection probability at an average received signal-to-noise ratio (SNR) of higher than approximately -5dB suggesting that the residual frequency offset is compensated to a sufficiently low level for the SSS sequence estimation. It is also shown that the PCID detection method achieves a high PCID detection probability of greater than 90% and 50% at the carrier frequency of 30 and 50GHz, respectively, at the average received SNR of 0dB for the frequency stability of a user equipment oscillator of 3ppm.

  • Private Information Retrieval from Coded Storage in the Presence of Omniscient and Limited-Knowledge Byzantine Adversaries Open Access

    Jun KURIHARA  Toru NAKAMURA  Ryu WATANABE  

     
    PAPER-Coding Theory

      Pubricized:
    2021/03/23
      Vol:
    E104-A No:9
      Page(s):
    1271-1283

    This paper investigates an adversarial model in the scenario of private information retrieval (PIR) from n coded storage servers, called Byzantine adversary. The Byzantine adversary is defined as the one altering b server responses and erasing u server responses to a user's query. In this paper, two types of Byzantine adversaries are considered; 1) the classic omniscient type that has the full knowledge on n servers as considered in existing literature, and 2) the reasonable limited-knowledge type that has information on only b+u servers, i.e., servers under the adversary's control. For these two types, this paper reveals that the resistance of a PIR scheme, i.e., the condition of b and u to correctly obtain the desired message, can be expressed in terms of a code parameter called the coset distance of linear codes employed in the scheme. For the omniscient type, the derived condition expressed by the coset distance is tighter and more precise than the estimation of the resistance by the minimum Hamming weight of the codes considered in existing researches. Furthermore, this paper also clarifies that if the adversary is limited-knowledge, the resistance of a PIR scheme could exceed that for the case of the omniscient type. Namely, PIR schemes can increase their resistance to Byzantine adversaries by allowing the limitation on adversary's knowledge.

  • Character Design Generation System Using Multiple Users' Gaze Information

    Hiroshi TAKENOUCHI  Masataka TOKUMARU  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2021/05/25
      Vol:
    E104-D No:9
      Page(s):
    1459-1466

    We investigate an interactive evolutionary computation (IEC) using multiple users' gaze information when users partially participate in each design evaluation. Many previous IEC systems have a problem that user evaluation loads are too large. Hence, we proposed to employ user gaze information for evaluating designs generated by IEC systems in order to solve this problem. In this proposed system, users just view the presented designs, not assess, then the system automatically creates users' favorite designs. With the user's gaze information, the proposed system generates coordination that can satisfy many users. In our previous study, we verified the effectiveness of the proposed system from a real system operation viewpoint. However, we did not consider the fluctuation of the users during a solution candidate evaluation. In the actual operation of the proposed system, users may change during the process due to the user interchange. Therefore, in this study, we verify the effectiveness of the proposed system when varying the users participating in each evaluation for each generation. In the experiment, we employ two types of situations as assumed in real environments. The first situation changes the number of users evaluating the designs for each generation. The second situation employs various users from the predefined population to evaluate the designs for each generation. From the experimental results in the first situation, we confirm that, despite the change in the number of users during the solution candidate evaluation, the proposed system can generate coordination to satisfy many users. Also, from the results in the second situation, we verify that the proposed system can also generate coordination which both users who participate in the coordination evaluation can more satisfy.

  • Analysis of Lower Bounds for Online Bin Packing with Two Item Sizes

    Hiroshi FUJIWARA  Ken ENDO  Hiroaki YAMAMOTO  

     
    PAPER-Algorithms and Data Structures

      Pubricized:
    2021/03/09
      Vol:
    E104-A No:9
      Page(s):
    1127-1133

    In the bin packing problem, we are asked to place given items, each being of size between zero and one, into bins of capacity one. The goal is to minimize the number of bins that contain at least one item. An online algorithm for the bin packing problem decides where to place each item one by one when it arrives. The asymptotic approximation ratio of the bin packing problem is defined as the performance of an optimal online algorithm for the problem. That value indicates the intrinsic hardness of the bin packing problem. In this paper we study the bin packing problem in which every item is of either size α or size β (≤ α). While the asymptotic approximation ratio for $alpha > rac{1}{2}$ was already identified, that for $alpha leq rac{1}{2}$ is only partially known. This paper is the first to give a lower bound on the asymptotic approximation ratio for any $alpha leq rac{1}{2}$, by formulating linear optimization problems. Furthermore, we derive another lower bound in a closed form by constructing dual feasible solutions.

  • Performance of Circular 32QAM/64QAM Schemes Using Frequency Domain Equalizer for DFT-Precoded OFDM

    Chihiro MORI  Miyu NAKABAYASHI  Mamoru SAWAHASHI  Teruo KAWAMURA  Nobuhiko MIKI  

     
    PAPER

      Pubricized:
    2021/03/17
      Vol:
    E104-B No:9
      Page(s):
    1054-1066

    This paper presents the average block error rate (BLER) performance of circular 32QAM and 64QAM schemes employing a frequency domain equalizer (FDE) for discrete Fourier transform (DFT)-precoded orthogonal frequency division multiplexing (OFDM) in multipath Rayleigh fading channels. The circular QAM scheme has an advantageous feature in that the fluctuation in the amplitude component is smaller than that for the cross or rectangular QAM scheme. Hence, focusing on the actual received signal-to-noise power ratio (SNR) taking into account a realistic peak-to-average power ratio (PAPR) measure called the cubic metric (CM), we compare the average BLER of the circular 32QAM and 64QAM schemes with those of cross 32QAM and rectangular 64QAM schemes, respectively. We investigate the theoretical throughput of various circular 32QAM and 64QAM schemes based on mutual information from the viewpoint of the minimum Euclidean distance. Link-level simulation results show that the circular 32QAM and 64QAM schemes with independent bit mapping for the phase and amplitude modulations achieves a lower required average received SNR considering the CM than that with the minimum Euclidean distance but with composite mapping of the phase and amplitude modulations. Through extensive link-level simulations, we show the potential benefit of the circular 32QAM and 64QAM schemes in terms of reducing the required average received SNR considering the CM that satisfies the target average BLER compared to the cross 32QAM or rectangular 64QAM scheme.

  • 28 GHz-Band Experimental Trial Using the Shinkansen in Ultra High-Mobility Environment for 5G Evolution

    Nobuhide NONAKA  Kazushi MURAOKA  Tatsuki OKUYAMA  Satoshi SUYAMA  Yukihiko OKUMURA  Takahiro ASAI  Yoshihiro MATSUMURA  

     
    PAPER

      Pubricized:
    2021/04/01
      Vol:
    E104-B No:9
      Page(s):
    1000-1008

    In order to enhance the fifth generation (5G) mobile communication system further toward 5G Evolution, high bit-rate transmission using high SHF bands (28GHz or EHF bands) should be more stable even in high-mobility environments such as high speed trains. Of particular importance, dynamic changes in the beam direction and the larger Doppler frequency shift can degrade transmission performances in such high frequency bands. Thus, we conduct the world's first 28 GHz-band 5G experimental trial on an actual Shinkansen running at a speed of 283km/h in Japan. This paper introduces the 28GHz-band experimental system used in the 5G experimental trial using the Shinkansen, and then it presents the experimental configuration in which three base stations (BSs) are deployed along the Tokaido Shinkansen railway and a mobile station is located in the train. In addition, transmission performances measured in this ultra high-mobility environment, show that a peak throughput of exceeding 1.0Gbps and successful consecutive BS connection among the three BSs.

  • Planarized Nb 4-Layer Fabrication Process for Superconducting Integrated Circuits and Its Fabricated Device Evaluation

    Shuichi NAGASAWA  Masamitsu TANAKA  Naoki TAKEUCHI  Yuki YAMANASHI  Shigeyuki MIYAJIMA  Fumihiro CHINA  Taiki YAMAE  Koki YAMAZAKI  Yuta SOMEI  Naonori SEGA  Yoshinao MIZUGAKI  Hiroaki MYOREN  Hirotaka TERAI  Mutsuo HIDAKA  Nobuyuki YOSHIKAWA  Akira FUJIMAKI  

     
    PAPER

      Pubricized:
    2021/03/17
      Vol:
    E104-C No:9
      Page(s):
    435-445

    We developed a Nb 4-layer process for fabricating superconducting integrated circuits that involves using caldera planarization to increase the flexibility and reliability of the fabrication process. We call this process the planarized high-speed standard process (PHSTP). Planarization enables us to flexibly adjust most of the Nb and SiO2 film thicknesses; we can select reduced film thicknesses to obtain larger mutual coupling depending on the application. It also reduces the risk of intra-layer shorts due to etching residues at the step-edge regions. We describe the detailed process flows of the planarization for the Josephson junction layer and the evaluation of devices fabricated with PHSTP. The results indicated no short defects or degradation in junction characteristics and good agreement between designed and measured inductances and resistances. We also developed single-flux-quantum (SFQ) and adiabatic quantum-flux-parametron (AQFP) logic cell libraries and tested circuits fabricated with PHSTP. We found that the designed circuits operated correctly. The SFQ shift-registers fabricated using PHSTP showed a high yield. Numerical simulation results indicate that the AQFP gates with increased mutual coupling by the planarized layer structure increase the maximum interconnect length between gates.

  • Detection Algorithms for FBMC/OQAM Spatial Multiplexing Systems

    Kuei-Chiang LAI  Chi-Jen CHEN  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/03/22
      Vol:
    E104-B No:9
      Page(s):
    1172-1187

    In this paper, we address the problem of detector design in severely frequency-selective channels for spatial multiplexing systems that adopt filter bank multicarrier based on offset quadrature amplitude modulation (FBMC/OQAM) as the communication waveforms. We consider decision feedback equalizers (DFEs) that use multiple feedback filters to jointly cancel the post-cursor components of inter-symbol interference, inter-antenna interference, and, in some configuration, inter-subchannel interference. By exploiting the special structures of the correlation matrix and the staggered property of the FBMC/OQAM signals, we obtain an efficient method of computing the DFE coefficients that requires a smaller number of multiplications than the linear equalizer (LE) and conventional DFE do. The simulation results show that the proposed detectors considerably outperform the LE and conventional DFE at moderate-to-high signal-to-noise ratios.

  • Physical Cell ID Detection Probability Using NB-IoT Synchronization Signals in 28-GHz Band

    Daisuke INOUE  Kyogo OTA  Mamoru SAWAHASHI  Satoshi NAGATA  

     
    PAPER

      Pubricized:
    2021/03/17
      Vol:
    E104-B No:9
      Page(s):
    1110-1119

    This paper presents the physical-layer cell identity (PCID) detection probability using the narrowband primary synchronization signal (NPSS) and narrowband secondary synchronization signal (NSSS) based on the narrowband Internet-of-Things (NB-IoT) radio interface considering frequency offset and the maximum Doppler frequency in the 28-GHz band. Simulation results show that the autocorrelation based NPSS detection method is more effective than the cross-correlation based NPSS detection using frequency offset estimation and compensation before the NPSS received timing detection from the viewpoints of PCID detection probability and computational complexity. We also show that when using autocorrelation based NPSS detection, the loss in the PCID detection probability at the carrier frequency of fc =28GHz compared to that for fc =3.5GHz is only approximately 5% at the average received signal-to-noise ratio (SNR) of 0dB when the frequency stability of a local oscillator of a user equipment (UE) set is 20ppm. Therefore, we conclude that the multiplexing schemes and sequences of NPSS and NSSS based on the NB-IoT radio interface associated with autocorrelation based NPSS detection will support the 28-GHz frequency spectra.

  • An Efficient Aircraft Boarding Strategy Considering Implementation

    Kenji UEHARA  Kunihiko HIRAISHI  Kokolo IKEDA  

     
    PAPER-Mathematical Systems Science

      Pubricized:
    2021/01/22
      Vol:
    E104-A No:8
      Page(s):
    1051-1058

    Boarding is the last step of aircraft turnaround and its completion in the shortest possible time is desired. In this paper, we propose a new boarding strategy that outperforms conventional strategies such as the back-to-front strategy and the outside-in strategy. The Steffen method is known as one of the most efficient boarding strategies in literature, but it is hard to be realized in the real situation because the complete sorting of passengers in a prescribed order is required. The proposed strategy shows a performance close to that of the Steffen method and can be easily implemented by using a special gate system.

341-360hit(5900hit)