The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] access(874hit)

101-120hit(874hit)

  • New Constructions of Multiple Binary ZCZ Sequence Sets with Inter-Set Zero Cross-Correlation Zone

    Tao LIU  Chengqian XU  Yubo LI  Xiaoyu CHEN  

     
    PAPER-Information Theory

      Vol:
    E100-A No:12
      Page(s):
    3007-3015

    In this correspondence, two types of multiple binary zero correlation zone (ZCZ) sequence sets with inter-set zero cross-correlation zone (ZCCZ) are constructed. Based on orthogonal matrices with order N×N, multiple binary ZCZ sequence sets with inter-set even and odd ZCCZ lengthes are constructed, each set is an optimal ZCZ sequence set with parameters (2N2, N, N+1)-ZCZ, among these ZCZ sequence sets, sequences possess ideal cross-correlation property within a zone of length 2Z or 2Z+1. These resultant multiple ZCZ sequence sets can be used in quasi-synchronous CDMA systems to remove the inter-cell interference (ICI).

  • A 197mW 70ms-Latency Full-HD 12-Channel Video-Processing SoC in 16nm CMOS for In-Vehicle Information Systems

    Seiji MOCHIZUKI  Katsushige MATSUBARA  Keisuke MATSUMOTO  Chi Lan Phuong NGUYEN  Tetsuya SHIBAYAMA  Kenichi IWATA  Katsuya MIZUMOTO  Takahiro IRITA  Hirotaka HARA  Toshihiro HATTORI  

     
    PAPER

      Vol:
    E100-A No:12
      Page(s):
    2878-2887

    A 197mW 70ms-latency Full-HD 12-channel video-processing SoC for in-vehicle information systems has been implemented in 16nm CMOS. The SoC integrates 17 video processors of 6 types to operate video processing independently of other processing in CPU/GPU. The synchronous scheme between the video processors achieves 70ms low-latency for driver assistance. The optimized implementation of lossy and lossless video-data compression reduces memory access data by half and power consumption by 20%.

  • A SOI Multi-VDD Dual-Port SRAM Macro for Serial Access Applications

    Nobutaro SHIBATA  Mayumi WATANABE  Takako ISHIHARA  

     
    PAPER-Integrated Electronics

      Vol:
    E100-C No:11
      Page(s):
    1061-1068

    Multiport SRAMs are frequently installed in network and/or telecommunication VLSIs to implement smart functions. This paper presents a high speed and low-power dual-port (i.e., 1W+1R two-port) SRAM macro customized for serial access operations. To reduce the wasted power dissipation due to subthreshold leakage currents, the supply voltage for 10T memory cells is lowered to 1 V and a power switch is prepared for every 64 word drivers. The switch is activated with look-ahead decoder-segment activation logic, so there is no penalty when selecting a wordline. The data I/O circuitry with a new column-based configuration makes it possible to hide the bitline precharge operation with the sensing operation in the read cycle ahead of it; that is, we have successfully reduced the read latency by a half clock cycle, resulting in a pure two-stage pipeline. The SRAM macro installed in a 4K-entry × 33-bit FIFO memory, fabricated with a 0.3-µm fully-depleted-SOI CMOS process, achieved a 500-MHz operation in the typical conditions of 2- and 1-V power supplies, and 25°C. The power consumption during the standby time was less than 1.0 mW, and that at a practical operating frequency of 400 MHz was in a range of 47-57 mW, depending on the bit-stream data pattern.

  • Price-Based Power Allocation with Rate Proportional Fairness Constraint in Downlink Non-Orthogonal Multiple Access Systems

    Zi-fu FAN  Chen-chen WEN  Zheng-qiang WANG  Xiao-yu WAN  

     
    LETTER-Communication Theory and Signals

      Vol:
    E100-A No:11
      Page(s):
    2543-2546

    In this letter, we investigate the price-based power allocation with rate proportional fairness constraint in downlink non-orthogonal multiple access (NOMA) systems. The Stackelberg game is utilized to model the interaction between the base station (BS) and users. The revenue maximization problem of the BS is first converted to rate allocation problem, then the optimal rate allocation for each user is obtained by variable substitution. Finally, a price-based power allocation with rate proportional fairness (PAPF) algorithm is proposed based on the relationship between rate and transmit power. Simulation results show that the proposed PAPF algorithm is superior to the previous price-based power allocation algorithm in terms of fairness index and minimum normalized user (MNU) rate.

  • An Iterative Cancellation Technique for Adjacent Channel Interference Induced by Amplifier Nonlinearity in 60GHz Band Wireless Communication Systems Open Access

    Noboru OSAWA  Shinsuke IBI  Seiichi SAMPEI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/05/15
      Vol:
    E100-B No:11
      Page(s):
    2060-2069

    This paper proposes an iterative cancellation technique for adjacent channel interference (ACI), induced by amplifier nonlinearity in millimeter wave (mmW) communication systems. In mmW communications, a large spectrum leak is expected because of the amplifier nonlinearity, and such a spectrum leak disturbs multichannel utilization. In order to mitigate the ACI, iterative interference cancellation in the receiver side is designed in this paper. Typically, iterative interference cancellation is conducted by generating a soft replica of interference from the feedback of the decoder, and subtracting the replica from the received signals. In this case, the canceller must know the amplifier nonlinearity in order to regenerate a soft replica of ACI. In this paper, amplifier nonlinearity is estimated by subjecting the received pilot signals to polynomial regression. We reveal that using only pilot signals in estimating amplifier nonlinearity is insufficient for guaranteeing replica accuracy. To address this issue, the proposed scheme exploits the detected data sequence in the regression analysis. We demonstrate that the proposed ACI cancellation technique can effectively mitigate ACI in multichannel utilization.

  • Non-Orthogonal Multiple Access Relaying for Device-to-Device Communication

    Young Bae SONG  Duk Kyung KIM  

     
    LETTER-Mobile Information Network and Personal Communications

      Vol:
    E100-A No:11
      Page(s):
    2551-2555

    Recently, non-orthogonal multiple access (NOMA) has gained a great deal of attention due to its ability to simultaneously transmit multiple streams. Device-to-device (D2D) relaying can increase the spectral efficiency via direct communication between two devices, and extends coverage by relaying signals from the base station. In this letter, we propose applying the NOMA technique for D2D relay where D2D relaying and D2D communication can be done simultaneously in the power domain. The proposed scheme can achieve higher spectral efficiency, and its performance is evaluated through extensive simulations in multiple-cell environments, compared with conventional D2D relay schemes.

  • Radio Access Technologies for Broadband Mobile Communications Open Access

    Mamoru SAWAHASHI  Kenichi HIGUCHI  

     
    INVITED PAPER-Wireless Communication Technologies

      Pubricized:
    2017/03/22
      Vol:
    E100-B No:9
      Page(s):
    1674-1687

    This paper describes the broadband radio access techniques for Universal Mobile Terrestrial Systems (UMTS)/Wideband Code Division Multiple Access (W-CDMA), High-Speed Downlink Packet Access (HSDPA)/High-Speed Uplink Packet Access (HSUPA), Long Term Evolution (LTE), and LTE-Advanced. Major technical pillars are almost identical regardless of the radio access systems of the respective generations. However, the key techniques that provide distinct performance improvements have changed according to the system requirements in each generation. Hence, in this paper, we focus on the key techniques associated with the system requirements. We also describe the requirements, radio access technology candidates, and challenges toward the future 5G systems.

  • Centralized Contention Based MAC for OFDMA WLAN

    Gunhee LEE  Cheeha KIM  

     
    LETTER-Information Network

      Pubricized:
    2017/06/06
      Vol:
    E100-D No:9
      Page(s):
    2219-2223

    The IEEE 802.11 wireless local area network (WLAN) is the most widely deployed communication standard in the world. Currently, the IEEE 802.11ax draft standard is one of the most advanced and promising among future wireless network standards. However, the suggested uplink-OFDMA (UL-OFDMA) random access method, based on trigger frame-random access (TF-R) from task group ax (TGax), does not yet show satisfying system performance. To enhance the UL-OFDMA capability of the IEEE 802.11ax draft standard, we propose a centralized contention-based MAC (CC-MAC) and describe its detailed operation. In this paper, we analyze the performance of CC-MAC by solving the Markov chain model and evaluating BSS throughput compared to other methods, such as DCF and TF-R, by computer simulation. Our results show that CC-MAC is a scalable and efficient scheme for improving the system performance in a UL-OFDMA random access situation in IEEE 802.11ax.

  • Technical Features and Approaches on Optical Access Networks for Various Applications Open Access

    Toshinori TSUBOI  Tomohiro TANIGUCHI  Tetsuya YOKOTANI  

     
    INVITED PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2017/03/22
      Vol:
    E100-B No:9
      Page(s):
    1606-1613

    This paper describes optical access networks focusing on passive optical network (PON) technologies from a technical point of view. Optical access networks have been applied to fiber-to-the-home as a driving force of broadband services and their use will continue growing in the near future. They will be applied as an aggregate component of broadband wireless networks. This paper also addresses solutions for their application.

  • Increasing Splitting Ratio of Extended-Reach WDM/TDM-PON by Using Central Office Sited Automatic Gain Controlled SOAs

    Masamichi FUJIWARA  Ryo KOMA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2017/02/02
      Vol:
    E100-B No:8
      Page(s):
    1388-1396

    To drastically increase the splitting ratio of extended-reach (40km span) time- and wavelength-division multiplexed passive optical networks (WDM/TDM-PONs), we modify the gain control scheme of our automatic gain controlled semiconductor optical amplifiers (AGC-SOAs) that were developed to support upstream transmission in long-reach systems. While the original AGC-SOAs are located outside the central office (CO) as repeaters, the new AGC-SOAs are located inside the CO and connected to each branch of an optical splitter in the CO. This arrangement has the potential to greatly reduce the costs of CO-sited equipment as they are shared by many more users if the new gain control scheme works properly even when the input optical powers are low. We develop a prototype and experimentally confirm its effectiveness in increasing the splitting ratio of extended-reach systems to 512.

  • Towards an Efficient Approximate Solution for the Weighted User Authorization Query Problem

    Jianfeng LU  Zheng WANG  Dewu XU  Changbing TANG  Jianmin HAN  

     
    PAPER-Access Control

      Pubricized:
    2017/05/18
      Vol:
    E100-D No:8
      Page(s):
    1762-1769

    The user authorization query (UAQ) problem determines whether there exists an optimum set of roles to be activated to provide a set of permissions requested by a user. It has been deemed as a key issue for efficiently handling user's access requests in role-based access control (RBAC). Unfortunately, the weight is a value attached to a permission/role representing its importance, should be introduced to UAQ, has been ignored. In this paper, we propose a comprehensive definition of the weighted UAQ (WUAQ) problem with the role-weighted-cardinality and permission-weighted-cardinality constraints. Moreover, we study the computational complexity of different subcases of WUAQ, and show that many instances in each subcase are intractable. In particular, inspired by the idea of the genetic algorithm, we propose an algorithm to approximate solve an intractable subcase of the WUAQ problem. An important observation is that this algorithm can be efficiently modified to handle the other subcases of the WUAQ problem. The experimental results show the advantage of the proposed algorithm, which is especially fit for the case that the computational overhead is even more important than the accuracy in a large-scale RBAC system.

  • Fronthaul Constrained Coordinated Transmission in Cloud-Based 5G Radio Access Network: Energy Efficiency Perspective

    Ying SUN  Yang WANG  Yuqing ZHONG  

     
    PAPER-Network

      Pubricized:
    2017/02/08
      Vol:
    E100-B No:8
      Page(s):
    1343-1351

    The cloud radio access network (C-RAN) is embracing unprecedented popularity in the evolution of current RAN towards 5G. One of the essential benefits of C-RAN is facilitating cooperative transmission to enhance capacity and energy performances. In this paper, we argue that the conventional symmetric coordination in which all antennas participate in transmission does not necessarily lead to an energy efficient C-RAN. Further, the current assessments of energy consumption should be modified to match this shifted paradigm in network architecture. Towards this end, this paper proposes an asymmetric coordination scheme to optimize the energy efficiency of C-RAN. Specifically, asymmetric coordination is approximated and formulated as a joint antenna selection and power allocation problem, which is then solved by a proposed sequential-iterative algorithm. A modular power consumption model is also developed to convert the computational complexity of coordination into baseband power consumption. Simulations verify the performance benefits of our proposed asymmetric coordination in effectively enhancing system energy efficiency.

  • Investigation on Non-Orthogonal Multiple Access with Reduced Complexity Maximum Likelihood Receiver and Dynamic Resource Allocation

    Yousuke SANO  Kazuaki TAKEDA  Satoshi NAGATA  Takehiro NAKAMURA  Xiaohang CHEN  Anxin LI  Xu ZHANG  Jiang HUILING  Kazuhiko FUKAWA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/02/08
      Vol:
    E100-B No:8
      Page(s):
    1301-1311

    Non-orthogonal multiple access (NOMA) is a promising multiple access scheme for further improving the spectrum efficiency compared to orthogonal multiple access (OMA) in the 5th Generation (5G) mobile communication systems. As inter-user interference cancellers for NOMA, two kinds of receiver structures are considered. One is the reduced complexity-maximum likelihood receiver (R-ML) and the other is the codeword level interference canceller (CWIC). In this paper, we show that the R-ML is superior to the CWIC in terms of scheduling flexibility. In addition, we propose a link to system (L2S) mapping scheme for the R-ML to conduct a system level evaluation, and show that the proposed scheme accurately predicts the block error rate (BLER) performance of the R-ML. The proposed L2S mapping scheme also demonstrates that the system level throughput performance of the R-ML is higher than that for the CWIC thanks to the scheduling flexibility.

  • Backscatter Assisted Wireless Powered Communication Networks with Non-Orthogonal Multiple Access

    Bin LYU  Zhen YANG  Guan GUI  

     
    LETTER-Digital Signal Processing

      Vol:
    E100-A No:8
      Page(s):
    1724-1728

    This letter considers a backscatter assisted wireless powered communication network (BAWPCN) with non-orthogonal multiple access (NOMA). This model consists of a hybrid access point (HAP) and multiple users which can work in either backscatter or harvest-then-transmit (HTT) protocol. To fully exploit time for information transmission, the users working in the backscatter protocol are scheduled to reflect modulated signals during the first phase of the HTT protocol which is dedicated for energy transfer. During the second phase, all users working in the HTT protocol transmit information to the HAP simultaneously since NOMA is adopted. Considering both short-term and long-term optimization problems to maximize the system throughput, the optimal resource allocation policies are obtained. Simulation results show that the proposed model can significantly improve the system performance.

  • A Near-Optimal Sensing Schedule for Spectrum Access in Multi-Hop Cognitive Radio Network

    Yun LI  Tohru ASAMI  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2016/12/29
      Vol:
    E100-B No:7
      Page(s):
    1160-1171

    The present paper proposes a dynamic spectrum access policy for multi-hop cognitive radio networks (CRNs), where the transmission in each hop suffers a delay waiting for the communication channel to become available. Recognizing the energy constraints, we assume that each secondary user (SU) in the network is powered by a battery with finite initial energy. We develop an energy-efficient policy for CRNs using the Markov decision process, which searches for spectrum opportunities without a common communication channel and assigns each sensor's decision to every time slot. We first consider a single-sensor scenario. Due to the intermittent activation of the sensor, achieving the optimal sensing schedule requires excessive complexity and is computationally intractable, owing to the fact that the state space of the Markov decision process evolves exponentially with time variance. In order to overcome this difficulty, we propose a state-reduced suboptimal policy by relaxing the constrained state space, i.e., assuming that the electrical energy of a node is infinite, because this state-reduced suboptimal approach can substantially reduce the complexity of decision-making for CRNs. We then analyze the performance of the proposed policy and compare it with the optimal solution. Furthermore, we verify the performance of this spectrum access policy under real conditions in which the electrical energy of a node is finite. The proposed spectrum access policy uses the dynamic information of each channel. We prove that this schedule is a good approximation for the true optimal schedule, which is impractical to obtain. According to our theoretical analysis, the proposed policy has less complexity but comparable performance. It is proved that when the operating time of the CRN is sufficiently long, the data reception rate on the sink node side will converge to the optimal rate with probability 1. Based on the results for the single-sensor scenario, the proposed schedule is extended to a multi-hop CRN. The proposed schedule can achieve synchronization between transmitter and receiver without relying on a common control channel, and also has near-optimal performance. The performance of the proposed spectrum access policy is confirmed through simulation.

  • Constructions of Zero Correlation Zone Sequence Sets with Low Cross-Correlation Property

    Tao LIU  Chengqian XU  Yubo LI  

     
    LETTER-Information Theory

      Vol:
    E100-A No:7
      Page(s):
    1583-1587

    This letter proposes a class of polyphase zero correlation zone (ZCZ) sequence sets with low inter-set cross-correlation property. The proposed ZCZ sequence sets are constructed from DFT matrices and r-coincidence sequences. Each ZCZ sequence set is optimal, and the absolute value of the cross-correlation function of sequences from different sets is less than or equal to $rsqrt{N}$, where N denotes the length of each sequence. These ZCZ sequence sets are suitable for multiuser environments.

  • Achieving Scalable and Optimized Attribute Revocation in Cloud Computing

    Somchart FUGKEAW  Hiroyuki SATO  

     
    PAPER

      Pubricized:
    2017/02/08
      Vol:
    E100-D No:5
      Page(s):
    973-983

    Revocation is one of the major problems for access control systems. Especially, the revocation cost for the data outsourced in the third party environment such as cloud storage systems. The revocation in the cloud-based access control typically deals with the cryptographic operations that introduce costly overheads for key re-generation, file re-encryption, and key re-distribution. Also, the communication for retrieving files for re-encryption and loading them back to the cloud is another non-trivial cost for data owners. In this paper, we propose a Very Lightweight Proxy Re-Encryption (VL-PRE) scheme to efficiently support attribute-based revocation and policy update in the collaborative data sharing in cloud computing environment. To this end, we propose three-phase VL-PRE protocol including re-encryption key generation, re-encryption key update, and re-encryption key renewal for supporting the optimized attribute revocation and policy update. Finally, we conduct the experiments to evaluate the performance of our VL-PRE and show that it exhibits less computation cost with higher scalability in comparison with existing PRE schemes.

  • A Novel Procedure for Implementing a Turbo Decoder on a GPU with Coalesced Memory Access

    Heungseop AHN  Seungwon CHOI  

     
    PAPER-Communication Theory and Signals

      Vol:
    E100-A No:5
      Page(s):
    1188-1196

    The sub-blocking algorithm has been known as a core component in implementing a turbo decoder using a Graphic Processing Unit (GPU) to use as many cores in the GPU as possible for parallel processing. However, even though the sub-blocking algorithm allows a large number of threads in a given GPU to be adopted for processing a large number of sub-blocks in parallel, each thread must access the global memory with strided addresses, which results in uncoalesced memory access. Because uncoalesced memory access causes a lot of unnecessary memory transactions, the memory bandwidth efficiency drops significantly, possibly as low as 1/8 in the case of an Long Term Evolution (LTE) turbo decoder, depending upon the compute capability of a GPU. In this paper, we present a novel method for converting uncoalesced memory access into coalesced access in a way that completely recovers the memory bandwidth efficiency to 100% without additional overhead. Our experimental tests, performed with NVIDIA's Geforce GTX 780 Ti GPU, show that the proposed method can enhance the throughput by nearly 30% compared with a conventional turbo decoder that suffers from uncoalesced memory access. Throughput provided by the proposed method has been observed to be 51.4Mbps when the number of iterations and that of sub-blocks are set to 6 and 32, respectively, in our experimental tests, which far exceeds the performance of previous works implemented the Max-Log-MAP algorithm.

  • Improving Security Level of LTE Access Procedure by Using Short-Life Shared Key

    Fawad AHMAD  Marnel PERADILLA  Akanksha SAINI  Younchan JUNG  

     
    PAPER-Network

      Pubricized:
    2016/11/21
      Vol:
    E100-B No:5
      Page(s):
    738-748

    To ensure secure mobile communication, the communicating entities must know their mutual identities. The entities which need to be identified in a mobile communication system are mobile devices and the network. Third Generation Partnership Project (3GPP) has specified Evolved Packet System Authentication and Key Agreement (EPS AKA) procedure for the mutual authentication of user and the Long Term Evolution (LTE) network. EPS AKA certainly overcomes most of the vulnerabilities in the Global System for Mobile Communications (GSM) and Universal Mobile Telecommunication System (UMTS) access procedures. However, the LTE access procedure still has security weaknesses against some of the sophisticated security threats, such as, Denial-of-Service (DoS) attacks, Man-in-the-Middle (MitM) attacks, rogue base station attacks and fails to ensure privacy protection for some of the important parameters. This paper proposes an improved security framework for the LTE access procedure by ensuring the confidentiality protection of International Mobile Subscriber Identity (IMSI) and random-challenge RAND. Also, our proposed system is designed to reduce the impact of DoS attacks which try to overwhelm the network with useless computations. We use a one-time shared key with a short lifetime between the UE and MME to protect IMSI and RAND privacy. Finally, we explore the parameters design for the proposed system which leads to satisfy the requirements imposed on computational load and latency as well as security strength.

  • Fast Persistent Heap Based on Non-Volatile Memory

    Wenzhe ZHANG  Kai LU  Xiaoping WANG  Jie JIAN  

     
    PAPER-Software System

      Pubricized:
    2017/02/01
      Vol:
    E100-D No:5
      Page(s):
    1035-1045

    New volatile memory (e.g. Phase Change Memroy) presents fast access, large capacity, byte-addressable, and non-volatility features. These features will bring impacts on the design of current software system. It has become a hot research topic of how to manage it and provide what kind of interface for upper application to use it. This paper proposes FP-Heap. FP-Heap supports direct access to non-volatile memory through a persistent heap interface. With FP-Heap, traditional persistent object systems can benefit directly from the byte-persistency of non-volatile memory. FP-Heap extends current virtual memory manager (VMM) to manage non-volatile memory and maintain a persistent mapping relationship. Also, FP-Heap offers a lightweight transaction mechanism to support atomic update of persistent data, a simple namespace to facilitate data indexing, and a basic access control mechanism to support data sharing. Compared with previous work Mnemosyne, FP-Heap achieves higher performance by its customized VMM and optimized transaction mechanism.

101-120hit(874hit)