The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] analysis(1591hit)

1-20hit(1591hit)

  • Loss Function for Deep Learning to Model Dynamical Systems Open Access

    Takahito YOSHIDA  Takaharu YAGUCHI  Takashi MATSUBARA  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2024/07/22
      Vol:
    E107-D No:11
      Page(s):
    1458-1462

    Accurately simulating physical systems is essential in various fields. In recent years, deep learning has been used to automatically build models of such systems by learning from data. One such method is the neural ordinary differential equation (neural ODE), which treats the output of a neural network as the time derivative of the system states. However, while this and related methods have shown promise, their training strategies still require further development. Inspired by error analysis techniques in numerical analysis while replacing numerical errors with modeling errors, we propose the error-analytic strategy to address this issue. Therefore, our strategy can capture long-term errors and thus improve the accuracy of long-term predictions.

  • Transient Analysis of Electromagnetic Scattering from Large-Scale Objects Using Physical Optics with Fast Inverse Laplace Transform Open Access

    Seiya KISHIMOTO  Ryoya OGINO  Kenta ARASE  Shinichiro OHNUKI  

     
    BRIEF PAPER

      Pubricized:
    2024/02/29
      Vol:
    E107-C No:11
      Page(s):
    486-489

    This paper introduces a computational approach for transient analysis of extensive scattering problems. This novel method is based on the combination of physical optics (PO) and the fast inverse Laplace transform (FILT). PO is a technique for analyzing electromagnetic scattering from large-scale objects. We modify PO for application in the complex frequency domain, where the scattered fields are evaluated. The complex frequency function is efficiently transformed into the time domain using FILT. The effectiveness of this combination is demonstrated through large-scale analysis and transient response for a short pulse incidence. The accuracy is investigated and validated by comparison with reference solutions.

  • Spatial Anomaly Detection Using Fast xFlow Proxy for Nation-Wide IP Network Open Access

    Shohei KAMAMURA  Yuhei HAYASHI  Takayuki FUJIWARA  

     
    PAPER-Internet

      Vol:
    E107-B No:11
      Page(s):
    728-738

    This paper proposes an anomaly-detection method using the Fast xFlow Proxy, which enables fine-grained measurement of communication traffic. When a fault occurs in services or networks, communication traffic changes from its normal behavior. Therefore, anomalies can be detected by analyzing their autocorrelations. However, in large-scale carrier networks, packets are generally encapsulated and observed as aggregate values, making it difficult to detect minute changes in individual communication flows. Therefore, we developed the Fast xFlow Proxy, which analyzes encapsulated packets in real time and enables flows to be measured at an arbitrary granularity. In this paper, we propose an algorithm that utilizes the Fast xFlow Proxy to detect not only the anomaly occurrence but also its cause, that is, the location of the fault at the end-to-end. The idea is not only to analyze the autocorrelation of a specific flow but also to apply spatial analysis to estimate the fault location by comparing the behavior of multiple flows. Through extensive simulations, we demonstrate that base station, network, and service faults can be detected without any false negative detections.

  • Investigating and Enhancing the Neural Distinguisher for Differential Cryptanalysis Open Access

    Gao WANG  Gaoli WANG  Siwei SUN  

     
    PAPER-Information Network

      Pubricized:
    2024/04/12
      Vol:
    E107-D No:8
      Page(s):
    1016-1028

    At Crypto 2019, Gohr first adopted the neural distinguisher for differential cryptanalysis, and since then, this work received increasing attention. However, most of the existing work focuses on improving and applying the neural distinguisher, the studies delving into the intrinsic principles of neural distinguishers are finite. At Eurocrypt 2021, Benamira et al. conducted a study on Gohr’s neural distinguisher. But for the neural distinguishers proposed later, such as the r-round neural distinguishers trained with k ciphertext pairs or ciphertext differences, denoted as NDcpk_r (Gohr’s neural distinguisher is the special NDcpk_r with K = 1) and NDcdk_r , such research is lacking. In this work, we devote ourselves to study the intrinsic principles and relationship between NDcdk_r and NDcpk_r. Firstly, we explore the working principle of NDcd1_r through a series of experiments and find that it strongly relies on the probability distribution of ciphertext differences. Its operational mechanism bears a strong resemblance to that of NDcp1_r given by Benamira et al.. Therefore, we further compare them from the perspective of differential cryptanalysis and sample features, demonstrating the superior performance of NDcp1_r can be attributed to the relationships between certain ciphertext bits, especially the significant bits. We then extend our investigation to NDcpk_r, and show that its ability to recognize samples heavily relies on the average differential probability of k ciphertext pairs and some relationships in the ciphertext itself, but the reliance between k ciphertext pairs is very weak. Finally, in light of the findings of our research, we introduce a strategy to enhance the accuracy of the neural distinguisher by using a fixed difference to generate the negative samples instead of the random one. Through the implementation of this approach, we manage to improve the accuracy of the neural distinguishers by approximately 2% to 8% for 7-round Speck32/64 and 9-round Simon32/64.

  • Machine Learning-Based System for Heat-Resistant Analysis of Car Lamp Design Open Access

    Hyebong CHOI  Joel SHIN  Jeongho KIM  Samuel YOON  Hyeonmin PARK  Hyejin CHO  Jiyoung JUNG  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2024/04/03
      Vol:
    E107-D No:8
      Page(s):
    1050-1058

    The design of automobile lamps requires accurate estimation of heat distribution to prevent overheating and deformation of the product. Traditional heat resistant analysis using Computational Fluid Dynamics (CFD) is time-consuming and requires expertise in thermofluid mechanics, making real-time temperature analysis less accessible to lamp designers. We propose a machine learning-based temperature prediction system for automobile lamp design. We trained our machine learning models using CFD results of various lamp designs, providing lamp designers real-time Heat-Resistant Analysis. Comprehensive tests on real lamp products demonstrate that our prediction model accurately estimates heat distribution comparable to CFD analysis within a minute. Our system visualizes the estimated heat distribution of car lamp design supporting quick decision-making by lamp designer. It is expected to shorten the product design process, improving the market competitiveness.

  • Modeling and Analysis of Electromechanical Automatic Leveling Mechanism for High-Mobility Vehicle-Mounted Theodolites Open Access

    Xiangyu LI  Ping RUAN  Wei HAO  Meilin XIE  Tao LV  

     
    PAPER-Measurement Technology

      Pubricized:
    2023/09/26
      Vol:
    E107-A No:7
      Page(s):
    1027-1039

    To achieve precise measurement without landing, the high-mobility vehicle-mounted theodolite needs to be leveled quickly with high precision and ensure sufficient support stability before work. After the measurement, it is also necessary to ensure that the high-mobility vehicle-mounted theodolite can be quickly withdrawn. Therefore, this paper proposes a hierarchical automatic leveling strategy and establishes a two-stage electromechanical automatic leveling mechanism model. Using coarse leveling of the first-stage automatic leveling mechanism and fine leveling of the second-stage automatic leveling mechanism, the model realizes high-precision and fast leveling of the vehicle-mounted theodolites. Then, the leveling control method based on repeated positioning is proposed for the first-stage automatic leveling mechanism. To realize the rapid withdrawal for high-mobility vehicle-mounted theodolites, the method ensures the coincidence of spatial movement paths when the structural parts are unfolded and withdrawn. Next, the leg static balance equation is constructed in the leveling state, and the support force detection method is discussed in realizing the stable support for vehicle-mounted theodolites. Furthermore, a mathematical model for “false leg” detection is established furtherly, and a “false leg” detection scheme based on the support force detection method is analyzed to significantly improve the support stability of vehicle-mounted theodolites. Finally, an experimental platform is constructed to perform the performance test for automatic leveling mechanisms. The experimental results show that the leveling accuracy of established two-stage electromechanical automatic leveling mechanism can reach 3.6″, and the leveling time is no more than 2 mins. The maximum support force error of the support force detection method is less than 15%, and the average support force error is less than 10%. In contrast, the maximum support force error of the drive motor torque detection method reaches 80.12%, and its leg support stability is much less than the support force detection method. The model and analysis method proposed in this paper can also be used for vehicle-mounted radar, vehicle-mounted laser measurement devices, vehicle-mounted artillery launchers and other types of vehicle-mounted equipment with high-precision and high-mobility working requirements.

  • Determination Method of Cascaded Number for Lumped Parameter Models Oriented to Transmission Lines Open Access

    Risheng QIN  Hua KUANG  He JIANG  Hui YU  Hong LI  Zhuan LI  

     
    PAPER-Electronic Circuits

      Pubricized:
    2023/12/20
      Vol:
    E107-C No:7
      Page(s):
    201-209

    This paper proposes a determination method of the cascaded number for lumped parameter models (LPMs) of the transmission lines. The LPM is used to simulate long-distance transmission lines, and the cascaded number significantly impacts the simulation results. Currently, there is a lack of a system-level determination method of the cascaded number for LPMs. Based on the theoretical analysis and eigenvalue decomposition of network matrix, this paper discusses the error in resonance characteristics between distributed parameter model and LPMs. Moreover, it is deduced that optimal cascaded numbers of the cascaded π-type and T-type LPMs are the same, and the Γ-type LPM has a lowest analog accuracy. The principle that the maximum simulation frequency is less than the first resonance frequency of each segment is presented. According to the principle, optimal cascaded numbers of cascaded π-type, T-type, and Γ-type LPMs are obtained. The effectiveness of the proposed determination method is verified by simulation.

  • Power Peak Load Forecasting Based on Deep Time Series Analysis Method Open Access

    Ying-Chang HUNG  Duen-Ren LIU  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2024/03/21
      Vol:
    E107-D No:7
      Page(s):
    845-856

    The prediction of peak power load is a critical factor directly impacting the stability of power supply, characterized significantly by its time series nature and intricate ties to the seasonal patterns in electricity usage. Despite its crucial importance, the current landscape of power peak load forecasting remains a multifaceted challenge in the field. This study aims to contribute to this domain by proposing a method that leverages a combination of three primary models - the GRU model, self-attention mechanism, and Transformer mechanism - to forecast peak power load. To contextualize this research within the ongoing discourse, it’s essential to consider the evolving methodologies and advancements in power peak load forecasting. By delving into additional references addressing the complexities and current state of the power peak load forecasting problem, this study aims to build upon the existing knowledge base and offer insights into contemporary challenges and strategies adopted within the field. Data preprocessing in this study involves comprehensive cleaning, standardization, and the design of relevant functions to ensure robustness in the predictive modeling process. Additionally, recognizing the necessity to capture temporal changes effectively, this research incorporates features such as “Weekly Moving Average” and “Monthly Moving Average” into the dataset. To evaluate the proposed methodologies comprehensively, this study conducts comparative analyses with established models such as LSTM, Self-attention network, Transformer, ARIMA, and SVR. The outcomes reveal that the models proposed in this study exhibit superior predictive performance compared to these established models, showcasing their effectiveness in accurately forecasting electricity consumption. The significance of this research lies in two primary contributions. Firstly, it introduces an innovative prediction method combining the GRU model, self-attention mechanism, and Transformer mechanism, aligning with the contemporary evolution of predictive modeling techniques in the field. Secondly, it introduces and emphasizes the utility of “Weekly Moving Average” and “Monthly Moving Average” methodologies, crucial in effectively capturing and interpreting seasonal variations within the dataset. By incorporating these features, this study enhances the model’s ability to account for seasonal influencing factors, thereby significantly improving the accuracy of peak power load forecasting. This contribution aligns with the ongoing efforts to refine forecasting methodologies and addresses the pertinent challenges within power peak load forecasting.

  • Operational Resilience of Network Considering Common-Cause Failures Open Access

    Tetsushi YUGE  Yasumasa SAGAWA  Natsumi TAKAHASHI  

     
    PAPER-Reliability, Maintainability and Safety Analysis

      Pubricized:
    2023/09/11
      Vol:
    E107-A No:6
      Page(s):
    855-863

    This paper discusses the resilience of networks based on graph theory and stochastic process. The electric power network where edges may fail simultaneously and the performance of the network is measured by the ratio of connected nodes is supposed for the target network. For the restoration, under the constraint that the resources are limited, the failed edges are repaired one by one, and the order of the repair for several failed edges is determined with the priority to the edge that the amount of increasing system performance is the largest after the completion of repair. Two types of resilience are discussed, one is resilience in the recovery stage according to the conventional definition of resilience and the other is steady state operational resilience considering the long-term operation in which the network state changes stochastically. The second represents a comprehensive capacity of resilience for a system and is analytically derived by Markov analysis. We assume that the large-scale disruption occurs due to the simultaneous failure of edges caused by the common cause failures in the analysis. Marshall-Olkin type shock model and α factor method are incorporated to model the common cause failures. Then two resilience measures, “operational resilience” and “operational resilience in recovery stage” are proposed. We also propose approximation methods to obtain these two operational resilience measures for complex networks.

  • Dataset of Functionally Equivalent Java Methods and Its Application to Evaluating Clone Detection Tools Open Access

    Yoshiki HIGO  

     
    PAPER-Software System

      Pubricized:
    2024/02/21
      Vol:
    E107-D No:6
      Page(s):
    751-760

    Modern high-level programming languages have a wide variety of grammar and can implement the required functionality in different ways. The authors believe that a large amount of code that implements the same functionality in different ways exists even in open source software where the source code is publicly available, and that by collecting such code, a useful data set can be constructed for various studies in software engineering. In this study, we construct a dataset of pairs of Java methods that have the same functionality but different structures from approximately 314 million lines of source code. To construct this dataset, the authors used an automated test generation technique, EvoSuite. Test cases generated by automated test generation techniques have the property that the test cases always succeed. In constructing the dataset, using this property, test cases generated from two methods were executed against each other to automatically determine whether the behavior of the two methods is the same to some extent. Pairs of methods for which all test cases succeeded in cross-running test cases are manually investigated to be functionally equivalent. This paper also reports the results of an accuracy evaluation of code clone detection tools using the constructed dataset. The purpose of this evaluation is assessing how accurately code clone detection tools could find the functionally equivalent methods, not assessing the accuracy of detecting ordinary clones. The constructed dataset is available at github (https://github.com/YoshikiHigo/FEMPDataset).

  • Locating Concepts on Use Case Steps in Source Code Open Access

    Shinpei HAYASHI  Teppei KATO  Motoshi SAEKI  

     
    PAPER

      Pubricized:
    2023/12/20
      Vol:
    E107-D No:5
      Page(s):
    602-612

    Use case descriptions describe features consisting of multiple concepts with following a procedural flow. Because existing feature location techniques lack a relation between concepts in such features, it is difficult to identify the concepts in the source code with high accuracy. This paper presents a technique to locate concepts in a feature described in a use case description consisting of multiple use case steps using dependency between them. We regard each use case step as a description of a concept and apply an existing concept location technique to the descriptions of concepts and obtain lists of modules. Also, three types of dependencies: time, call, and data dependencies among use case steps are extracted based on their textual description. Modules in the obtained lists failing to match the dependency between concepts are filtered out. Thus, we can obtain more precise lists of modules. We have applied our technique to use case descriptions in a benchmark. Results show that our technique outperformed baseline setting without applying the filtering.

  • Coupling Analysis of Fiber-Type Polarization Splitter Open Access

    Taiki ARAKAWA  Kazuhiro YAMAGUCHI  Kazunori KAMEDA  Shinichi FURUKAWA  

     
    PAPER

      Pubricized:
    2023/10/27
      Vol:
    E107-C No:4
      Page(s):
    98-106

    We study the device length and/or band characteristics examined by two coupling analysis methods for our proposed fiber-type polarization splitter (FPS) composed of single mode fiber and polarization maintaining fiber. The first method is based on the power transition characteristics of the coupled-mode theory (CMT), and the second, a more accurate analysis method, is based on improved fundamental mode excitation (IFME). The CMT and IFME were evaluated and investigated with respect to the device length and bandwidth characteristics of the FPS. In addition, the influence of the excitation point shift of the fundamental mode, which has not been almost researched so far, is also analysed by using IFME.

  • Mining User Activity Patterns from Time-Series Data Obtained from UWB Sensors in Indoor Environments Open Access

    Muhammad FAWAD RAHIM  Tessai HAYAMA  

     
    PAPER

      Pubricized:
    2023/12/19
      Vol:
    E107-D No:4
      Page(s):
    459-467

    In recent years, location-based technologies for ubiquitous environments have aimed to realize services tailored to each purpose based on information about an individual's current location. To establish such advanced location-based services, an estimation technology that can accurately recognize and predict the movements of people and objects is necessary. Although global positioning system (GPS) has already been used as a standard for outdoor positioning technology and many services have been realized, several techniques using conventional wireless sensors such as Wi-Fi, RFID, and Bluetooth have been considered for indoor positioning technology. However, conventional wireless indoor positioning is prone to the effects of noise, and the large range of estimated indoor locations makes it difficult to identify human activities precisely. We propose a method to mine user activity patterns from time-series data of user's locationss in an indoor environment using ultra-wideband (UWB) sensors. An UWB sensor is useful for indoor positioning due to its high noise immunity and measurement accuracy, however, to our knowledge, estimation and prediction of human indoor activities using UWB sensors have not yet been addressed. The proposed method consists of three steps: 1) obtaining time-series data of the user's location using a UWB sensor attached to the user, and then estimating the areas where the user has stayed; 2) associating each area of the user's stay with a nearby landmark of activity and assigning indoor activities; and 3) mining the user's activity patterns based on the user's indoor activities and their transitions. We conducted experiments to evaluate the proposed method by investigating the accuracy of estimating the user's area of stay using a UWB sensor and observing the results of activity pattern mining applied to actual laboratory members over 30-days. The results showed that the proposed method is superior to a comparison method, Time-based clustering algorithm, in estimating the stay areas precisely, and that it is possible to reveal the user's activity patterns appropriately in the actual environment.

  • A Combined Alignment Model for Code Search

    Juntong HONG  Eunjong CHOI  Osamu MIZUNO  

     
    PAPER

      Pubricized:
    2023/12/15
      Vol:
    E107-D No:3
      Page(s):
    257-267

    Code search is a task to retrieve the most relevant code given a natural language query. Several recent studies proposed deep learning based methods use multi-encoder model to parse code into multi-field to represent code. These methods enhance the performance of the model by distinguish between similar codes and utilizing a relation matrix to bridge the code and query. However, these models require more computational resources and parameters than single-encoder models. Furthermore, utilizing the relation matrix that solely relies on max-pooling disregards the delivery of word alignment information. To alleviate these problems, we propose a combined alignment model for code search. We concatenate the multi-code fields into one sequence to represent code and use one encoding model to encode code features. Moreover, we transform the relation matrix using trainable vectors to avoid information losses. Then, we combine intra-modal and cross-modal attention to assign the salient words while matching the corresponding code and query. Finally, we apply the attention weight to code/query embedding and compute the cosine similarity. To evaluate the performance of our model, we compare our model with six previous models on two popular datasets. The results show that our model achieves 0.614 and 0.687 Top@1 performance, outperforming the best comparison models by 12.2% and 9.3%, respectively.

  • The Influence of Future Perspective on Job Satisfaction and Turnover Intention of Software Engineers

    Ikuto YAMAGATA  Masateru TSUNODA  Keitaro NAKASAI  

     
    LETTER

      Pubricized:
    2023/12/08
      Vol:
    E107-D No:3
      Page(s):
    268-272

    Software development companies must consider employees' job satisfaction and turnover intentions. To explain the related factors, this study focused on future perspective index (FPI). FPI was assumed to relate positively to satisfaction and negatively to turnover. In the analysis, we compared the FPI with existing factors that are considered to be related to job satisfaction. We discovered that the FPI was promising for enhancing explanatory power, particularly when analyzing satisfaction.

  • Best Possible Algorithms for One-Way Trading with Only the Maximum Fluctuation Ratio Available

    Hiroshi FUJIWARA  Keiji HIRAO  Hiroaki YAMAMOTO  

     
    PAPER

      Pubricized:
    2023/10/23
      Vol:
    E107-D No:3
      Page(s):
    278-285

    In Variant 4 of the one-way trading game [El-Yaniv, Fiat, Karp, and Turpin, 2001], a player has one dollar at the beginning and wants to convert it to yen only by one-way conversion. The exchange rate is guaranteed to fluctuate between m and M, and only the maximum fluctuation ratio φ = M/m is informed to the player in advance. The performance of an algorithm for this game is measured by the competitive ratio. El-Yaniv et al. derived the best possible competitive ratio over all algorithms for this game. However, it seems that the behavior of the best possible algorithm itself has not been explicitly described. In this paper we reveal the behavior of the best possible algorithm by solving a linear optimization problem. The behavior turns out to be quite different from that of the best possible algorithm for Variant 2 in which the player knows m and M in advance.

  • Power Analysis of Floating-Point Operations for Leakage Resistance Evaluation of Neural Network Model Parameters

    Hanae NOZAKI  Kazukuni KOBARA  

     
    PAPER

      Pubricized:
    2023/09/25
      Vol:
    E107-A No:3
      Page(s):
    331-343

    In the field of machine learning security, as one of the attack surfaces especially for edge devices, the application of side-channel analysis such as correlation power/electromagnetic analysis (CPA/CEMA) is expanding. Aiming to evaluate the leakage resistance of neural network (NN) model parameters, i.e. weights and biases, we conducted a feasibility study of CPA/CEMA on floating-point (FP) operations, which are the basic operations of NNs. This paper proposes approaches to recover weights and biases using CPA/CEMA on multiplication and addition operations, respectively. It is essential to take into account the characteristics of the IEEE 754 representation in order to realize the recovery with high precision and efficiency. We show that CPA/CEMA on FP operations requires different approaches than traditional CPA/CEMA on cryptographic implementations such as the AES.

  • Device Type Classification Based on Two-Stage Traffic Behavior Analysis Open Access

    Chikako TAKASAKI  Tomohiro KORIKAWA  Kyota HATTORI  Hidenari OHWADA  

     
    PAPER

      Pubricized:
    2023/10/17
      Vol:
    E107-B No:1
      Page(s):
    117-125

    In the beyond 5G and 6G networks, the number of connected devices and their types will greatly increase including not only user devices such as smartphones but also the Internet of Things (IoT). Moreover, Non-terrestrial networks (NTN) introduce dynamic changes in the types of connected devices as base stations or access points are moving objects. Therefore, continuous network capacity design is required to fulfill the network requirements of each device. However, continuous optimization of network capacity design for each device within a short time span becomes difficult because of the heavy calculation amount. We introduce device types as groups of devices whose traffic characteristics resemble and optimize network capacity per device type for efficient network capacity design. This paper proposes a method to classify device types by analyzing only encrypted traffic behavior without using payload and packets of specific protocols. In the first stage, general device types, such as IoT and non-IoT, are classified by analyzing packet header statistics using machine learning. Then, in the second stage, connected devices classified as IoT in the first stage are classified into IoT device types, by analyzing a time series of traffic behavior using deep learning. We demonstrate that the proposed method classifies device types by analyzing traffic datasets and outperforms the existing IoT-only device classification methods in terms of the number of types and the accuracy. In addition, the proposed model performs comparable as a state-of-the-art model of traffic classification, ResNet 1D model. The proposed method is suitable to grasp device types in terms of traffic characteristics toward efficient network capacity design in networks where massive devices for various services are connected and the connected devices continuously change.

  • An Anomalous Behavior Detection Method Utilizing IoT Power Waveform Shapes

    Kota HISAFURU  Kazunari TAKASAKI  Nozomu TOGAWA  

     
    PAPER

      Pubricized:
    2023/08/16
      Vol:
    E107-A No:1
      Page(s):
    75-86

    In recent years, with the wide spread of the Internet of Things (IoT) devices, security issues for hardware devices have been increasing, where detecting their anomalous behaviors becomes quite important. One of the effective methods for detecting anomalous behaviors of IoT devices is to utilize consumed energy and operation duration time extracted from their power waveforms. However, the existing methods do not consider the shape of time-series data and cannot distinguish between power waveforms with similar consumed energy and duration time but different shapes. In this paper, we propose a method for detecting anomalous behaviors based on the shape of time-series data by incorporating a shape-based distance (SBD) measure. The proposed method first obtains the entire power waveform of the target IoT device and extracts several application power waveforms. After that, we give the invariances to them, and we can effectively obtain the SBD between every two application power waveforms. Based on the SBD values, the local outlier factor (LOF) method can finally distinguish between normal application behaviors and anomalous application behaviors. Experimental results demonstrate that the proposed method successfully detects anomalous application behaviors, while the existing state-of-the-art method fails to detect them.

  • A Note on the Confusion Coefficient of Boolean Functions

    Yu ZHOU  Jianyong HU  Xudong MIAO  Xiaoni DU  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2023/05/24
      Vol:
    E106-A No:12
      Page(s):
    1525-1530

    Low confusion coefficient values can make side-channel attacks harder for vector Boolean functions in Block cipher. In this paper, we give new results of confusion coefficient for f ⊞ g, f ⊡ g, f ⊕ g and fg for different Boolean functions f and g, respectively. And we deduce a relationship on the sum-of-squares of the confusion coefficient between one n-variable function and two (n - 1)-variable decomposition functions. Finally, we find that the confusion coefficient of vector Boolean functions is affine invariant.

1-20hit(1591hit)