The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] current(695hit)

21-40hit(695hit)

  • Formal Modeling and Verification of Concurrent FSMs: Case Study on Event-Based Cooperative Transport Robots

    Yoshinao ISOBE  Nobuhiko MIYAMOTO  Noriaki ANDO  Yutaka OIWA  

     
    PAPER

      Pubricized:
    2021/07/08
      Vol:
    E104-D No:10
      Page(s):
    1515-1532

    In this paper, we demonstrate that a formal approach is effective for improving reliability of cooperative robot designs, where the control logics are expressed in concurrent FSMs (Finite State Machines), especially in accordance with the standard FSM4RTC (FSM for Robotic Technology Components), by a case study of cooperative transport robots. In the case study, FSMs are modeled in the formal specification language CSP (Communicating Sequential Processes) and checked by the model-checking tool FDR, where we show techniques for modeling and verification of cooperative robots implemented with the help of the RTM (Robotic Technology Middleware).

  • Visualizing Positive and Negative Charges of Triboelectricity Generated on Polyimide Film

    Dai TAGUCHI  Takaaki MANAKA  Mitsumasa IWAMOTO  

     
    PAPER

      Pubricized:
    2020/10/23
      Vol:
    E104-C No:6
      Page(s):
    170-175

    Triboelectric generator is attracting much attention as a power source of electronics application. Electromotive force induced by rubbing is a key for triboelectric generator. From dielectric physics point of view, there are two microscopic origins for electromotive force, i.e., electronic charge displacement and dipolar rotation. A new way for evaluating these two origins is an urgent task. We have been developing an optical second-harmonic generation (SHG) technique as a tool for probing charge displacement and dipolar alignment, selectively, by utilizing wavelength dependent response of SHG to the two origins. In this paper, an experimental way that identifies polarity of electronic charge displacement, i.e., positive charge and negative charge, is proposed. Results showed that the use of local oscillator makes it possible to identify the polarity of charges by means of SHG. As an example, positive and negative charge distribution created by rubbing polyimide surface is illustrated.

  • A Throughput Drop Estimation Model for Concurrent Communications under Partially Overlapping Channels without Channel Bonding and Its Application to Channel Assignment in IEEE 802.11n WLAN

    Kwenga ISMAEL MUNENE  Nobuo FUNABIKI  Hendy BRIANTORO  Md. MAHBUBUR RAHMAN  Fatema AKHTER  Minoru KURIBAYASHI  Wen-Chung KAO  

     
    PAPER

      Pubricized:
    2021/02/16
      Vol:
    E104-D No:5
      Page(s):
    585-596

    Currently, the IEEE 802.11n wireless local-area network (WLAN) has been extensively deployed world-wide. For the efficient channel assignment to access-points (APs) from the limited number of partially overlapping channels (POCs) at 2.4GHz band, we have studied the throughput drop estimation model for concurrently communicating links using the channel bonding (CB). However, non-CB links should be used in dense WLANs, since the CB links often reduce the transmission capacity due to high interferences from other links. In this paper, we examine the throughput drop estimation model for concurrently communicating links without using the CB in 802.11n WLAN, and its application to the POC assignment to the APs. First, we verify the model accuracy through experiments in two network fields. The results show that the average error is 9.946% and 6.285% for the high and low interference case respectively. Then, we verify the effectiveness of the POC assignment to the APs using the model through simulations and experiments. The results show that the model improves the smallest throughput of a host by 22.195% and the total throughput of all the hosts by 22.196% on average in simulations for three large topologies, and the total throughput by 12.89% on average in experiments for two small topologies.

  • Electromagnetic Scattering Analysis from a Rectangular Hole in a Thick Conducting Screen

    Khanh Nam NGUYEN  Hiroshi SHIRAI  Hirohide SERIZAWA  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2020/08/20
      Vol:
    E104-C No:4
      Page(s):
    134-143

    Electromagnetic scattering of an electromagnetic plane wave from a rectangular hole in a thick conducting screen is solved using the Kirchhoff approximation (KA). The scattering fields can be derived as field radiations from equivalent magnetic current sources on the aperture of the hole. Some numerical results are compared with those by the Kobayashi potential (KP) method. The proposed method can be found to be efficient to solve the diffraction problem for high frequency regime.

  • Joint Analysis of Sound Events and Acoustic Scenes Using Multitask Learning

    Noriyuki TONAMI  Keisuke IMOTO  Ryosuke YAMANISHI  Yoichi YAMASHITA  

     
    PAPER-Speech and Hearing

      Pubricized:
    2020/11/19
      Vol:
    E104-D No:2
      Page(s):
    294-301

    Sound event detection (SED) and acoustic scene classification (ASC) are important research topics in environmental sound analysis. Many research groups have addressed SED and ASC using neural-network-based methods, such as the convolutional neural network (CNN), recurrent neural network (RNN), and convolutional recurrent neural network (CRNN). The conventional methods address SED and ASC separately even though sound events and acoustic scenes are closely related to each other. For example, in the acoustic scene “office,” the sound events “mouse clicking” and “keyboard typing” are likely to occur. Therefore, it is expected that information on sound events and acoustic scenes will be of mutual aid for SED and ASC. In this paper, we propose multitask learning for joint analysis of sound events and acoustic scenes, in which the parts of the networks holding information on sound events and acoustic scenes in common are shared. Experimental results obtained using the TUT Sound Events 2016/2017 and TUT Acoustic Scenes 2016 datasets indicate that the proposed method improves the performance of SED and ASC by 1.31 and 1.80 percentage points in terms of the F-score, respectively, compared with the conventional CRNN-based method.

  • A Low-Power Current-Reuse LNA for 3D Ultrasound Beamformers Open Access

    Yohei NAKAMURA  Shinya KAJIYAMA  Yutaka IGARASHI  Takashi OSHIMA  Taizo YAMAWAKI  

     
    PAPER

      Vol:
    E104-A No:2
      Page(s):
    492-498

    3D ultrasound imagers require low-noise amplifier (LNA) with much lower power consumption and smaller chip area than conventional 2D imagers because of the huge amount of transducer channels. This paper presents a low-power small-size LNA with a novel current-reuse circuitry for 3D ultrasound imaging systems. The proposed LNA is composed of a differential common source amplifier and a source-follower driver which share the current without using inductors. The LNA was fabricated in a 0.18-μm CMOS process with only 0.0056mm2. The measured results show a gain of 21dB and a bandwidth of 9MHz. The proposed LNA achieves an average noise density of 11.3nV/√Hz, and the 2nd harmonic distortion below -40dBc with 0.1-Vpp input. The supply current is 85μA with a 1.8-V power supply, which is competitive with conventional LNAs by finer CMOS process.

  • Evaluation of Side-Channel Leakage Simulation by Using EMC Macro-Model of Cryptographic Devices

    Yusuke YANO  Kengo IOKIBE  Toshiaki TESHIMA  Yoshitaka TOYOTA  Toshihiro KATASHITA  Yohei HORI  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Pubricized:
    2020/08/06
      Vol:
    E104-B No:2
      Page(s):
    178-186

    Side-channel (SC) leakage from a cryptographic device chip is simulated as the dynamic current flowing out of the chip. When evaluating the simulated current, an evaluation by comparison with an actual measurement is essential; however, it is difficult to compare them directly. This is because a measured waveform is typically the output voltage of probe placed at the observation position outside the chip, and the actual dynamic current is modified by several transfer impedances. Therefore, in this paper, the probe voltage is converted into the dynamic current by using an EMC macro-model of a cryptographic device being evaluated. This paper shows that both the amplitude and the SC analysis (correlation power analysis and measurements to disclosure) results of the simulated dynamic current were evaluated appropriately by using the EMC macro-model. An evaluation confirms that the shape of the simulated current matches the measured one; moreover, the SC analysis results agreed with the measured ones well. On the basis of the results, it is confirmed that a register-transfer level (RTL) simulation of the dynamic current gives a reasonable estimation of SC traces.

  • Combined Effects of Test Voltages and Climatic Conditions on Air Discharge Currents from ESD Generator with Two Different Approach Speeds

    Takeshi ISHIDA  Osamu FUJIWARA  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Pubricized:
    2020/06/08
      Vol:
    E103-B No:12
      Page(s):
    1432-1437

    Air discharge immunity testing for electronic equipment is specified in the standard 61000-4-2 of the International Eelectrotechnical Commission (IEC) under the climatic conditions of temperature (T) from 15 to 35 degrees Celsius and relative humidity (RH) from 30 to 60%. This implies that the air discharge testing is likely to provide significantly different test results due to the wide climatic range. To clarify effects of the above climatic conditions on air discharge testing, we previously measured air discharge currents from an electrostatic discharge (ESD) generator with test voltages from 2kV to 15kV at an approach speed of 80mm/s under 6 combinations of T and RH in the IEC specified range and non-specified climatic range. The result showed that the same absolute humidity (AH), which is determined by T and RH, provides almost the identical waveforms of the discharge currents despite different T and RH, and also that the current peaks at higher test voltages decrease as the AH increases. In this study, we further examine the combined effects of air discharges on test voltages, T, RH and AH with respect to two different approach speeds of 20mm/s and 80mm/s. As a result, the approach speed of 80mm/s is confirmed to provide the same results as the previous ones under the identical climatic conditions, whereas at a test voltage of 15kV under the IEC specified climatic conditions over 30% RH, the 20mm/s approach speed yields current waveforms entirely different from those at 80mm/s despite the same AH, and the peaks are basically unaffected by the AH. Under the IEC non-specified climatic conditions with RH less than 20%, however, the peaks decrease at higher test voltages as the AH increases. These findings obtained imply that under the same AH condition, at 80mm/s the air discharge peak is not almost affected by the RH, while at 20mm/s the lower the RH is, the higher is the peak on air discharge current.

  • FiC-RNN: A Multi-FPGA Acceleration Framework for Deep Recurrent Neural Networks

    Yuxi SUN  Hideharu AMANO  

     
    PAPER-Computer System

      Pubricized:
    2020/09/24
      Vol:
    E103-D No:12
      Page(s):
    2457-2462

    Recurrent neural networks (RNNs) have been proven effective for sequence-based tasks thanks to their capability to process temporal information. In real-world systems, deep RNNs are more widely used to solve complicated tasks such as large-scale speech recognition and machine translation. However, the implementation of deep RNNs on traditional hardware platforms is inefficient due to long-range temporal dependence and irregular computation patterns within RNNs. This inefficiency manifests itself in the proportional increase in the latency of RNN inference with respect to the number of layers of deep RNNs on CPUs and GPUs. Previous work has focused mostly on optimizing and accelerating individual RNN cells. To make deep RNN inference fast and efficient, we propose an accelerator based on a multi-FPGA platform called Flow-in-Cloud (FiC). In this work, we show that the parallelism provided by the multi-FPGA system can be taken advantage of to scale up the inference of deep RNNs, by partitioning a large model onto several FPGAs, so that the latency stays close to constant with respect to increasing number of RNN layers. For single-layer and four-layer RNNs, our implementation achieves 31x and 61x speedup compared with an Intel CPU.

  • Contact Current Density Analysis Inside Human Body in Low-Frequency Band Using Geometric Multi-Grid Solver

    Masamune NOMURA  Yuki NAKAMURA  Hiroo TARAO  Amane TAKEI  

     
    PAPER

      Pubricized:
    2020/03/24
      Vol:
    E103-C No:11
      Page(s):
    588-596

    This paper describes the effectiveness of the geometric multi-grid method in a current density analysis using a numerical human body model. The scalar potential finite difference (SPFD) method is used as a numerical method for analyzing the current density inside a human body due to contact with charged objects in a low-frequency band, and research related to methods to solve faster large-scale simultaneous equations based on the SPFD method has been conducted. In previous research, the block incomplete Cholesky conjugate gradients (ICCG) method is proposed as an effective method to solve the simultaneous equations faster. However, even though the block ICCG method is used, many iterations are still needed. Therefore, in this study, we focus on the geometric multi-grid method as a method to solve the problem. We develop the geometric-multi-grid method and evaluate performances by comparing it with the block ICCG method in terms of computation time and the number of iterations. The results show that the number of iterations needed for the geometric multi-grid method is much less than that for the block ICCG method. In addition, the computation time is much shorter, depending on the number of threads and the number of coarse grids. Also, by using multi-color ordering, the parallel performance of the geometric multi-grid method can be greatly improved.

  • Password-Based Authenticated Key Exchange without Centralized Trusted Setup

    Kazuki YONEYAMA  

     
    PAPER-cryptography

      Vol:
    E103-A No:10
      Page(s):
    1142-1156

    Almost all existing password-based authenticated key exchange (PAKE) schemes achieve concurrent security in the standard model by relying on the common reference string (CRS) model. A drawback of the CRS model is to require a centralized trusted authority in the setup phase; thus, passwords of parties may be revealed if the authority ill-uses trapdoor information of the CRS. There are a few secure PAKE schemes in the plain model, but, these are not achievable in a constant round (i.e., containing a linear number of rounds). In this paper, we discuss how to relax the setup assumption for (constant round) PAKE schemes. We focus on the multi-string (MS) model that allows a number of authorities (including malicious one) to provide some reference strings independently. The MS model is a more relaxed setup assumption than the CRS model because we do not trust any single authority (i.e., just assuming that a majority of authorities honestly generate their reference strings). Though the MS model is slightly restrictive than the plain model, it is very reasonable assumption because it is very easy to implement. We construct a (concurrently secure) three-move PAKE scheme in the MS model (justly without random oracles) based on the Groce-Katz PAKE scheme. The main ingredient of our scheme is the multi-string simulation-extractable non-interactive zero-knowledge proof that provides both the simulation-extractability and the extraction zero-knowledge property even if minority authorities are malicious. This work can be seen as a milestone toward constant round PAKE schemes in the plain model.

  • Ultra-Low Quiescent Current LDO with FVF-Based Load Transient Enhanced Circuit Open Access

    Kenji MII  Akihito NAGAHAMA  Hirobumi WATANABE  

     
    PAPER-Electronic Circuits

      Pubricized:
    2020/05/28
      Vol:
    E103-C No:10
      Page(s):
    466-471

    This paper proposes an ultra-low quiescent current low-dropout regulator (LDO) with a flipped voltage follower (FVF)-based load transient enhanced circuit for wireless sensor network (WSN). Some characteristics of an FVF are low output impedance, low voltage operation, and simple circuit configuration [1]. In this paper, we focus on the characteristics of low output impedance and low quiescent current. A load transient enhanced circuit based on an FVF circuit configuration for an LDO was designed in this study. The proposed LDO, including the new circuit, was fabricated in a 0.6 µm CMOS process. The designed LDO achieved an undershoot of 75 mV under experimental conditions of a large load transient of 100 µA to 10 mA and a current slew rate (SR) of 1 µs. The quiescent current consumed by the LDO at no load operation was 204 nA.

  • A Field Equivalence between Physical Optics and GO-Based Equivalent Current Methods for Scattering from Circular Conducting Cylinders

    Ngoc Quang TA  Hiroshi SHIRAI  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2020/04/08
      Vol:
    E103-C No:9
      Page(s):
    382-387

    Plane wave scattering from a circular conducting cylinder and a circular conducting strip has been formulated by equivalent surface currents which are postulated from the scattering geometrical optics (GO) field. Thus derived radiation far fields are found to be the same as those formulated by a conventional physical optics (PO) approximation for both E and H polarizations.

  • Sound Event Detection Utilizing Graph Laplacian Regularization with Event Co-Occurrence

    Keisuke IMOTO  Seisuke KYOCHI  

     
    PAPER-Speech and Hearing

      Pubricized:
    2020/06/08
      Vol:
    E103-D No:9
      Page(s):
    1971-1977

    A limited number of types of sound event occur in an acoustic scene and some sound events tend to co-occur in the scene; for example, the sound events “dishes” and “glass jingling” are likely to co-occur in the acoustic scene “cooking.” In this paper, we propose a method of sound event detection using graph Laplacian regularization with sound event co-occurrence taken into account. In the proposed method, the occurrences of sound events are expressed as a graph whose nodes indicate the frequencies of event occurrence and whose edges indicate the sound event co-occurrences. This graph representation is then utilized for the model training of sound event detection, which is optimized under an objective function with a regularization term considering the graph structure of sound event occurrence and co-occurrence. Evaluation experiments using the TUT Sound Events 2016 and 2017 detasets, and the TUT Acoustic Scenes 2016 dataset show that the proposed method improves the performance of sound event detection by 7.9 percentage points compared with the conventional CNN-BiGRU-based detection method in terms of the segment-based F1 score. In particular, the experimental results indicate that the proposed method enables the detection of co-occurring sound events more accurately than the conventional method.

  • A Highly Configurable 7.62GOP/s Hardware Implementation for LSTM

    Yibo FAN  Leilei HUANG  Kewei CHEN  Xiaoyang ZENG  

     
    PAPER-Integrated Electronics

      Pubricized:
    2019/11/27
      Vol:
    E103-C No:5
      Page(s):
    263-273

    The neural network has been one of the most useful techniques in the area of speech recognition, language translation and image analysis in recent years. Long Short-Term Memory (LSTM), a popular type of recurrent neural networks (RNNs), has been widely implemented on CPUs and GPUs. However, those software implementations offer a poor parallelism while the existing hardware implementations lack in configurability. In order to make up for this gap, a highly configurable 7.62 GOP/s hardware implementation for LSTM is proposed in this paper. To achieve the goal, the work flow is carefully arranged to make the design compact and high-throughput; the structure is carefully organized to make the design configurable; the data buffering and compression strategy is carefully chosen to lower the bandwidth without increasing the complexity of structure; the data type, logistic sigmoid (σ) function and hyperbolic tangent (tanh) function is carefully optimized to balance the hardware cost and accuracy. This work achieves a performance of 7.62 GOP/s @ 238 MHz on XCZU6EG FPGA, which takes only 3K look-up table (LUT). Compared with the implementation on Intel Xeon E5-2620 CPU @ 2.10GHz, this work achieves about 90× speedup for small networks and 25× speed-up for large ones. The consumption of resources is also much less than that of the state-of-the-art works.

  • Software Development Effort Estimation from Unstructured Software Project Description by Sequence Models

    Tachanun KANGWANTRAKOOL  Kobkrit VIRIYAYUDHAKORN  Thanaruk THEERAMUNKONG  

     
    PAPER

      Pubricized:
    2020/01/14
      Vol:
    E103-D No:4
      Page(s):
    739-747

    Most existing methods of effort estimations in software development are manual, labor-intensive and subjective, resulting in overestimation with bidding fail, and underestimation with money loss. This paper investigates effectiveness of sequence models on estimating development effort, in the form of man-months, from software project data. Four architectures; (1) Average word-vector with Multi-layer Perceptron (MLP), (2) Average word-vector with Support Vector Regression (SVR), (3) Gated Recurrent Unit (GRU) sequence model, and (4) Long short-term memory (LSTM) sequence model are compared in terms of man-months difference. The approach is evaluated using two datasets; ISEM (1,573 English software project descriptions) and ISBSG (9,100 software projects data), where the former is a raw text and the latter is a structured data table explained the characteristic of a software project. The LSTM sequence model achieves the lowest and the second lowest mean absolute errors, which are 0.705 and 14.077 man-months for ISEM and ISBSG datasets respectively. The MLP model achieves the lowest mean absolute errors which is 14.069 for ISBSG datasets.

  • Real-Time Generic Object Tracking via Recurrent Regression Network

    Rui CHEN  Ying TONG  Ruiyu LIANG  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2019/12/20
      Vol:
    E103-D No:3
      Page(s):
    602-611

    Deep neural networks have achieved great success in visual tracking by learning a generic representation and leveraging large amounts of training data to improve performance. Most generic object trackers are trained from scratch online and do not benefit from a large number of videos available for offline training. We present a real-time generic object tracker capable of incorporating temporal information into its model, learning from many examples offline and quickly updating online. During the training process, the pre-trained weight of convolution layer is updated lagging behind, and the input video sequence length is gradually increased for fast convergence. Furthermore, only the hidden states in recurrent network are updated to guarantee the real-time tracking speed. The experimental results show that the proposed tracking method is capable of tracking objects at 150 fps with higher predicting overlap rate, and achieves more robustness in multiple benchmarks than state-of-the-art performance.

  • Recurrent Neural Network Compression Based on Low-Rank Tensor Representation

    Andros TJANDRA  Sakriani SAKTI  Satoshi NAKAMURA  

     
    PAPER-Music Information Processing

      Pubricized:
    2019/10/17
      Vol:
    E103-D No:2
      Page(s):
    435-449

    Recurrent Neural Network (RNN) has achieved many state-of-the-art performances on various complex tasks related to the temporal and sequential data. But most of these RNNs require much computational power and a huge number of parameters for both training and inference stage. Several tensor decomposition methods are included such as CANDECOMP/PARAFAC (CP), Tucker decomposition and Tensor Train (TT) to re-parameterize the Gated Recurrent Unit (GRU) RNN. First, we evaluate all tensor-based RNNs performance on sequence modeling tasks with a various number of parameters. Based on our experiment results, TT-GRU achieved the best results in a various number of parameters compared to other decomposition methods. Later, we evaluate our proposed TT-GRU with speech recognition task. We compressed the bidirectional GRU layers inside DeepSpeech2 architecture. Based on our experiment result, our proposed TT-format GRU are able to preserve the performance while reducing the number of GRU parameters significantly compared to the uncompressed GRU.

  • High-PSRR, Low-Voltage CMOS Current Mode Reference Circuit Using Self-Regulator with Adaptive Biasing Technique

    Kenya KONDO  Hiroki TAMURA  Koichi TANNO  

     
    PAPER-Analog Signal Processing

      Vol:
    E103-A No:2
      Page(s):
    486-491

    In this paper, we propose the low voltage CMOS current mode reference circuit using self-regulator with adaptive biasing technique. It drastically reduces the line sensitivity (LS) of the output voltage and the power supply voltage dependence of the temperature coefficient (TC). The self-regulator used in the proposed circuit adaptively generates the minimum voltage required the reference core circuit following the PVT (process, voltage and temperature) conditions. It makes possible to improve circuit performances instead of slightly increasing minimum power supply voltage. This proposed circuit has been designed and evaluated by SPICE simulation using TSMC 65nm CMOS process with 3.3V (2.5V over-drive) transistor option. From simulation results, LS is reduced to 0.0065%/V under 0.8V < VDD < 3.0V. TC is 67.6ppm/°C under the condition that the temperature range is from -40°C to 125°C and VDD range is from 0.8V to 3.0V. The power supply rejection ratio (PSRR) is less than -80.4dB when VDD is higher than 0.8V and the noise frequency is 100Hz. According to the simulation results, we could confirm that the performances of the proposed circuit are improved compared with the conventional circuit.

  • Latent Words Recurrent Neural Network Language Models for Automatic Speech Recognition

    Ryo MASUMURA  Taichi ASAMI  Takanobu OBA  Sumitaka SAKAUCHI  Akinori ITO  

     
    PAPER-Speech and Hearing

      Pubricized:
    2019/09/25
      Vol:
    E102-D No:12
      Page(s):
    2557-2567

    This paper demonstrates latent word recurrent neural network language models (LW-RNN-LMs) for enhancing automatic speech recognition (ASR). LW-RNN-LMs are constructed so as to pick up advantages in both recurrent neural network language models (RNN-LMs) and latent word language models (LW-LMs). The RNN-LMs can capture long-range context information and offer strong performance, and the LW-LMs are robust for out-of-domain tasks based on the latent word space modeling. However, the RNN-LMs cannot explicitly capture hidden relationships behind observed words since a concept of a latent variable space is not present. In addition, the LW-LMs cannot take into account long-range relationships between latent words. Our idea is to combine RNN-LM and LW-LM so as to compensate individual disadvantages. The LW-RNN-LMs can support both a latent variable space modeling as well as LW-LMs and a long-range relationship modeling as well as RNN-LMs at the same time. From the viewpoint of RNN-LMs, LW-RNN-LM can be considered as a soft class RNN-LM with a vast latent variable space. In contrast, from the viewpoint of LW-LMs, LW-RNN-LM can be considered as an LW-LM that uses the RNN structure for latent variable modeling instead of an n-gram structure. This paper also details a parameter inference method and two kinds of implementation methods, an n-gram approximation and a Viterbi approximation, for introducing the LW-LM to ASR. Our experiments show effectiveness of LW-RNN-LMs on a perplexity evaluation for the Penn Treebank corpus and an ASR evaluation for Japanese spontaneous speech tasks.

21-40hit(695hit)