The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] differential amplifier(8hit)

1-8hit
  • A Compact Fully-Differential Distributed Amplifier with Coupled Inductors in 0.18-µm CMOS Technology

    Keisuke KAWAHARA  Yohtaro UMEDA  Kyoya TAKANO  Shinsuke HARA  

     
    PAPER

      Pubricized:
    2023/04/19
      Vol:
    E106-C No:11
      Page(s):
    669-676

    This paper presents a compact fully-differential distributed amplifier using a coupled inductor. Differential distributed amplifiers are widely required in optical communication systems. Most of the distributed amplifiers reported in the past are single-ended or pseudo-differential topologies. In addition, the differential distributed amplifiers require many inductors, which increases the silicon cost. In this study, we use differentially coupled inductors to reduce the chip area to less than half and eliminate the difficulties in layout design. The challenge in using coupled inductors is the capacitive parasitic coupling that degrades the flatness of frequency response. To address this challenge, the odd-mode image parameters of a differential artificial transmission line are derived using a simple loss-less model. Based on the analytical results, we optimize the dimensions of the inductor with the gradient descent algorithm to achieve accurate impedance matching and phase matching. The amplifier was fabricated in 0.18-µm CMOS technology. The core area of the amplifier is 0.27 mm2, which is 57% smaller than the previous work. Besides, we demonstrated a small group delay variation of ±2.7 ps thanks to the optimization. the amplifier successfully performed 30-Gbps NRZ and PAM4 transmissions with superior jitter performance. The proposed technique will promote the high-density integration of differential traveling wave devices.

  • A 0.7-V Opamp in Scaled Low-Standby-Power FinFET Technology

    Shin-ichi O'UCHI  Kazuhiko ENDO  Takashi MATSUKAWA  Yongxun LIU  Tadashi NAKAGAWA  Yuki ISHIKAWA  Junichi TSUKADA  Hiromi YAMAUCHI  Toshihiro SEKIGAWA  Hanpei KOIKE  Kunihiro SAKAMOTO  Meishoku MASAHARA  

     
    PAPER

      Vol:
    E95-C No:4
      Page(s):
    686-695

    This paper demonstrates a FinFET operational amplifier (opamp), which is suitable to be integrated with digital circuits in a scaled low-standby-power (LSTP) technology and operates at extremely low voltage. The opamp is consisting of an adaptive threshold-voltage (Vt) differential pair and a low-voltage source follower using independent-double-gate- (IDG-) FinFETs. These two components enable the opamp to extend the common-mode voltage range (CMR) below the nominal Vt even if the supply voltage is less than 1.0 V. The opamp was implemented by our FinFET technology co-integrating common-DG- (CDG-) and IDG-FinFETs. More than 40-dB DC gain and 1-MHz gain-bandwidth product in the 500-mV-wide input CMR at the supply voltage of 0.7 V was estimated with SPICE simulation. The fabricated chip successfully demonstrated the 0.7-V operation with the 480-mV-wide CMR, even though the nominal Vt was 400 mV.

  • On-Chip In-Place Measurements of Vth and Signal/Substrate Response of Differential Pair Transistors

    Yoji BANDO  Satoshi TAKAYA  Toru OHKAWA  Toshiharu TAKARAMOTO  Toshio YAMADA  Masaaki SOUDA  Shigetaka KUMASHIRO  Tohru MOGAMI  Makoto NAGATA  

     
    PAPER-Electronic Circuits

      Vol:
    E95-C No:1
      Page(s):
    137-145

    In-place AC measurements of the signal gain and substrate sensitivity of differential pair transistors of an analog amplifier are combined with DC characterization of the threshold voltage (Vth) of the same transistors. An on-chip continuous time waveform monitoring technique enables in-place matrix measurements of differential pair transistors with a variety of channel sizes and geometry, allowing the wide coverage of experiments about the transistor-level physical layout dependency of substrate noise response. A prototype test structure uses a 90-nm CMOS technology and demonstrates the geometry-dependent variation of substrate sensitivity of transistors in operation.

  • A 0.9-V 12-bit 40-MSPS Pipeline ADC for Wireless Receivers

    Tomohiko ITO  Tetsuro ITAKURA  

     
    PAPER

      Vol:
    E93-A No:2
      Page(s):
    395-401

    A 0.9-V 12-bit 40-MSPS pipeline ADC with I/Q amplifier sharing technique is presented for wireless receivers. To achieve high linearity even at 0.9-V supply, the clock signals to sampling switches are boosted over 0.9 V in conversion stages. The clock-boosting circuit for lifting these clocks is shared between I-ch ADC and Q-ch ADC, reducing the area penalty. Low supply voltage narrows the available output range of the operational amplifier. A pseudo-differential (PD) amplifier with two-gain-stage common-mode feedback (CMFB) is proposed in views of its wide output range and power efficiency. This ADC is fabricated in 90-nm CMOS technology. At 40 MS/s, the measured SNDR is 59.3 dB and the corresponding effective number of bits (ENOB) is 9.6. Until Nyquist frequency, the ENOB is kept over 9.3. The ADC dissipates 17.3 mW/ch, whose performances are suitable for ADCs for mobile wireless systems such as WLAN/WiMAX.

  • A CMOS RF Power Detector Using an Improved Unbalanced Source Coupled Pair

    Hangue PARK  Jaejun LEE  Jaechun LEE  Sangwook NAM  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E91-C No:12
      Page(s):
    1969-1970

    This paper presents the design of a CMOS RF Power Detector (PD) using 0.18 µm standard CMOS technology. The PD is an improved unbalanced source coupled pair incorporating an output differential amplifier and sink current steering. It realizes an input detectable power range of -30 to -20 dBm over 0.1-1 GHz. Also it shows a maximum data rate of 30 Mbps with 2 pF output loading under OOK modulation. The overall current consumption is 1.9 mA under a 1.5 V supply.

  • 55-mW, 1.2-V, 12-bit, 100-MSPS Pipeline ADCs for Wireless Receivers

    Tomohiko ITO  Daisuke KUROSE  Takeshi UENO  Takafumi YAMAJI  Tetsuro ITAKURA  

     
    PAPER

      Vol:
    E91-C No:6
      Page(s):
    887-893

    For wireless receivers, low-power 1.2-V 12-bit 100-MSPS pipeline ADCs are fabricated in 90-nm CMOS technology. To achieve low-power dissipation at 1.2 V without the degradation of SNR, the configuration of 2.5 bit/stage is employed with an I/Q amplifier sharing technique. Furthermore, single-stage pseudo-differential amplifiers are used in a Sample-and-Hold (S/H) circuit and a 1st Multiplying Digital-to-Analog Converter (MDAC). The pseudo-differential amplifier with two-gain-stage transimpedance gain-boosting amplifiers realizes high DC gain of more than 90 dB with low power. The measured SNR of the 100-MSPS ADC is 66.7 dB at 1.2-V supply. Under that condition, each ADC dissipates only 55 mW.

  • A Low Distortion and Low Noise Differential Amplifier Suitable for 3G LTE Applications Using the Even- and Odd-Mode Impedance Differences of a Bias Circuit

    Toshifumi NAKATANI  Koichi OGAWA  

     
    PAPER

      Vol:
    E91-C No:6
      Page(s):
    844-853

    A low distortion and low noise differential amplifier using the difference between the even- and odd-mode impedances is proposed. In order to realize an amplifier with high OIP3 and low NF characteristics, the impedance of the bias circuit should be low (<300 Ω) at the difference frequency and high (>4 kΩ) at the carrier frequency. Although the frequency response of the bias circuit impedance can only meet these conditions with difficulty, owing to the 20 MHz Tx signal bandwidth for 3G LTE, the proposed amplifier can achieve the impedance difference using the properties of a differential configuration where the difference frequency signal is the even-mode and the carrier frequency is the odd-mode. It has been demonstrated that the NF of the proposed amplifier, which has been fabricated in 0.18 µm SiGe BiCMOS technology operating at 2.14 GHz, can be kept to 1.6 dB or less and an OIP3 of 9.0 dBm can be achieved, which is 3 dB higher than that of a conventional amplifier, in the condition where the power gain is greater than 18 dB.

  • A Video-Rate 10-b Triple-Stage Bi-CMOS A/D Converter

    Akira MATSUZAWA  Shoichiro TADA  

     
    PAPER-Analog LSIs

      Vol:
    E77-C No:12
      Page(s):
    1903-1911

    This paper describes the circuit design and experimental results of a video-rate 10-b analog-to-digital converter (ADC) suitable for consumer video products, such as high-definition TV sets. Triple-stage conversion scheme combined with two new conversion methods, "Dynamic Sliding Reference Method" and "Triangular Interpolation Method," and an internal Bi-CMOS Sample/Hold circuit have been developed. These conversion methods require no adjustment circuit to fit reference voltages between conversion stages and realize small active area. As a result, a maximum conversion frequency of 16 MHz, acceptable SNRs of 56 dB and 48 dB for 10 kHz and 8 MHz input frequency respectively and small DNLE of 0.75 LSB have been achieved. This ADC is fabricated with 1.2 µm Bi-CMOS technology and integrates very small number of bipolar transistors of 2 K on a small active area of 2.52.7 mm2 and consumes 350 mW.