The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] fault model(9hit)

1-9hit
  • Longest Fault-Free Cycles in Folded Hypercubes with Conditional Faulty Elements

    Wen-Yin HUANG  Jia-Jie LIU  Jou-Ming CHANG  Ro-Yu WU  

     
    PAPER

      Vol:
    E97-A No:6
      Page(s):
    1187-1191

    An n-dimensional folded hypercube, denoted by FQn, is an enhanced n-dimensional hypercube with one extra link between nodes that have the furthest Hamming distance. Let FFv (respectively, FFe) denote the set of faulty nodes (respectively, faulty links) in FQn. Under the assumption that every fault-free node in FQn is incident to at least two fault-free links, Hsieh et al. (Inform. Process. Lett. 110 (2009) pp.41-53) showed that if |FFv|+|FFe| ≤ 2n-4 for n ≥ 3, then FQn-FFv-FFe contains a fault-free cycle of length at least 2n-2|FFv|. In this paper, we show that, under the same conditional fault model, FQn with n ≥ 5 can tolerate more faulty elements and provides the same lower bound of the length of a longest fault-free cycle, i.e., FQn-FFv-FFe contains a fault-free cycle of length at least 2n-2|FFv| if |FFv|+|FFe| ≤ 2n-3 for n ≥ 5.

  • A Novel Per-Test Fault Diagnosis Method Based on the Extended X-Fault Model for Deep-Submicron LSI Circuits

    Yuta YAMATO  Yusuke NAKAMURA  Kohei MIYASE  Xiaoqing WEN  Seiji KAJIHARA  

     
    PAPER-Fault Diagnosis

      Vol:
    E91-D No:3
      Page(s):
    667-674

    Per-test diagnosis based on the X-fault model is an effective approach for a circuit with physical defects of non-deterministic logic behavior. However, the extensive use of vias and buffers in a deep-submicron circuit and the unpredictable order relation among threshold voltages at the fanout branches of a gate have not been fully addressed by conventional per-test X-fault diagnosis. To take these factors into consideration, this paper proposes an improved per-test X-fault diagnosis method, featuring (1) an extended X-fault model to handle vias and buffers and (2) the use of occurrence probabilities of logic behaviors for a physical defect to handle the unpredictable relation among threshold voltages. Experimental results show the effectiveness of the proposed method.

  • Fault Diagnosis on Multiple Fault Models by Using Pass/Fail Information

    Yuzo TAKAMATSU  Hiroshi TAKAHASHI  Yoshinobu HIGAMI  Takashi AIKYO  Koji YAMAZAKI  

     
    PAPER-Fault Diagnosis

      Vol:
    E91-D No:3
      Page(s):
    675-682

    In general, we do not know which fault model can explain the cause of the faulty values at the primary outputs in a circuit under test before starting diagnosis. Moreover, under Built-In Self Test (BIST) environment, it is difficult to know which primary output has a faulty value on the application of a failing test pattern. In this paper, we propose an effective diagnosis method on multiple fault models, based on only pass/fail information on the applied test patterns. The proposed method deduces both the fault model and the fault location based on the number of detections for the single stuck-at fault at each line, by performing single stuck-at fault simulation with both passing and failing test patterns. To improve the ability of fault diagnosis, our method uses the logic values of lines and the condition whether the stuck-at faults at the lines are detected or not by passing and failing test patterns. Experimental results show that our method can accurately identify the fault models (stuck-at fault model, AND/OR bridging fault model, dominance bridging fault model, or open fault model) for 90% faulty circuits and that the faulty sites are located within two candidate faults.

  • A Per-Test Fault Diagnosis Method Based on the X-Fault Model

    Xiaoqing WEN  Seiji KAJIHARA  Kohei MIYASE  Yuta YAMATO  Kewal K. SALUJA  Laung-Terng WANG  Kozo KINOSHITA  

     
    PAPER-Dependable Computing

      Vol:
    E89-D No:11
      Page(s):
    2756-2765

    This paper proposes a new per-test fault diagnosis method based on the X-fault model. The X-fault model can represent all possible faulty behaviors of a physical defect or defects in a gate and/or on its fanout branches by assigning different X symbols assigned to the fanout branches. A partial symbolic fault simulation method is proposed for the X-fault model. Then, a novel technique is proposed for extracting more diagnostic information by analyzing matching details between observed and simulated responses. Furthermore, a unique method is proposed to score the results of fault diagnosis. Experimental results on benchmark circuits demonstrate the superiority of the proposed method over conventional per-test fault diagnosis based on the stuck-at fault model.

  • On Design for IDDQ-Based Diagnosability of CMOS Circuits Using Multiple Power Supplies

    Xiaoqing WEN  Seiji KAJIHARA  Hideo TAMAMOTO  Kewal K. SALUJA  Kozo KINOSHITA  

     
    PAPER-Computer Components

      Vol:
    E88-D No:4
      Page(s):
    703-710

    This paper presents a novel approach to improving the IDDQ-based diagnosability of a CMOS circuit by dividing the circuit into independent partitions and using a separate power supply for each partition. This technique makes it possible to implement multiple IDDQ measurement points, resulting in improved IDDQ-based diagnosability. The paper formalizes the problem of partitioning a circuit for this purpose and proposes optimal and heuristic based solutions. The effectiveness of the proposed approach is demonstrated through experimental results.

  • A New Diagnostic Method Using Probabilistic Temporal Fault Models

    Kazuo HASHIMOTO  Kazunori MATSUMOTO  Norio SHIRATORI  

     
    INVITED PAPER-Artificial Intelligence,Cognitive Science

      Vol:
    E85-D No:3
      Page(s):
    444-454

    This paper introduces a probabilistic modeling of alarm observation delay, and shows a novel method of model-based diagnosis for time series observation. First, a fault model is defined by associating an event tree rooted by each fault hypothesis with probabilistic variables representing temporal delay. The most probable hypothesis is obtained by selecting one whose Akaike information criterion (AIC) is minimal. It is proved by simulation that the AIC-based hypothesis selection achieves a high precision in diagnosis.

  • A Fault Model for Multiple-Valued PLA's and Its Equivalences

    Yasunori NAGATA  Masao MUKAIDONO  

     
    PAPER-Computer Aided Design (CAD)

      Vol:
    E77-A No:9
      Page(s):
    1527-1534

    In this paper, a fault model for multiple-valued programmable logic arrays (MV-PLAs) is proposed and the equivalences of faults of MV-PLA's are discussed. In a supposed multiple-valued NOR/TSUM PLA model, it is shown that multiple-valued stuck-at faults, multiple-valued bridging faults, multiple-valued threshold shift faults and other some faults in a literal generator circuit are equivalent or subequivalent to a multiple crosspoint fault in the NOR plane or a multiple fault of weights in the TSUM plane. These results lead the fact that multiple-valued test vector set which indicates all multiple crosspoint fault and all multiple fault of weights also detects above equivalent or subequivalent faults in a MV-PLA.

  • An Analysis of the Economics of the VLSI Development Including Test Cost

    Koji NAKAMAE  Homare SAKAMOTO  Hiromu FUJIOKA  

     
    PAPER-Computer Aided Design (CAD)

      Vol:
    E77-A No:4
      Page(s):
    698-705

    In order to evaluate the effect of testing technologies such as electron beam (EB) testing and focused ion beam (FIB) reconstruction on the VLSI development cycle, the VLSI development period and cost are analyzed by using detailed fault models which make possible to take into consideration the effect of EB and FIB techniques. First, the specifications of fabricated VLSIs and the VLSI development cycle are modeled. Next the faults which can be diagnosed by such testing techniques are modeled. By using the parametric model of the VLSI development cycle, the development period and cost are analyzed. In the fault diagnosis stage, the use of an EB tester or the combinational use of an EB tester and an FIB equipment, instead of a traditional mechanical prober is considered. It is seen that the development period and cost are reduced by using EB and FIB diagnosis equipments by a factor of about 3. The effect of scan path method is also evaluated by making use of the same simulation method. Results show that the scan path design is effective for the reduction in both period and cost in the development cycle.

  • Scene Interpretation with Default Parameter Models and Qualitative Constraints

    Michael HILD  Yoshiaki SHIRAI  

     
    PAPER-Image Processing, Computer Graphics and Pattern Recognition

      Vol:
    E76-D No:12
      Page(s):
    1510-1520

    High variability of object features and bad class separation of objects are the main causes for the difficulties encountered during the interpretation of ground-level natural scenes. For coping with these two problems we propose a method which extracts those regions that can be segmented and immediately recognized with sufficient reliability (core regions) in the first stage, and later try to extend these core regions up to their real object boundaries. The extraction of reliable core regions is generally difficult to achieve. Instead of using fixed sets of features and fixed parameter settings, our method employs multiple local features (including textural features) and multiple parameter settings. Not all available features may yield useful core regions, but those core regions that are extracted from these multiple features make a cntributio to the reliability of the objects they represent. The extraction mechanism computes multiple segmentations of the same object from these multiple features and parameter settings, because it is not possible to extract such regions uniquely. Then those regions are extracted which satisfy the constraints given by knowledge about the objects (shape, location, orientation, spatial relationships). Several spatially overlapping regions are combined. Combined regions obtained for several features are integrated to form core regions for the given object calss.