The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] floating gate(16hit)

1-16hit
  • A Noise-Robust Positive-Feedback Floating-Gate Logic

    Luis F. CISNEROS-SINENCIO  Alejandro DIAZ-SANCHEZ  Jaime RAMIREZ-ANGULO  

     
    PAPER

      Vol:
    E99-C No:4
      Page(s):
    452-457

    Despite logic families based on floating-gate MOS (FGMOS) transistors achieve significant reductions in terms of power and transistor count, these logics have had little impact on VLSI design due to their sensitivity to noise. In order to attain robustness to this phenomenon, Positive-Feedback Floating-Gate logic (PFFGL) uses a differential architecture and positive feedback; data obtained from a 0.5µm ON Semiconductors test chip and from SPICE simulations shows PFFGL to be immune to noise from parasitic couplings as well as to leakage even when minimum device size is used.

  • Photoexcited Carrier Transfer in a NiSi-Nanodots/Si-Quantum-Dots Hybrid Floating Gate in MOS Structures

    Mitsuhisa IKEDA  Katsunori MAKIHARA  Seiichi MIYAZAKI  

     
    PAPER

      Vol:
    E96-C No:5
      Page(s):
    694-698

    We have fabricated MOS capacitors with a hybrid floating gate (FG) consisting of Ni silicide nanodots (NiSi-NDs) and silicon-quantum-dots (Si-QDs) and studied electron transfer characteristics in the hybrid FG structures induced by the irradiation of 1310 nm light. The flat-band voltage shift due to the charging of the hybrid FG under light irradiation was lower than that in the dark. The observed optical response can be attributed to the shift of the charge centroid in the hybrid FG caused by the photoexcitation of electrons in NiSi-NDs and their transfer to Si-QDs. The photoexcited electron transfer from the NiSi-NDs to the Si-QDs in response to pulsed gate voltages was also evaluated from the increase in transient current caused by the light irradiation. The amount of transferred charge is likely to increase in proportion to pulse gate voltage.

  • FG Width Scalability of the 3-D Vertical FG NAND Using the Sidewall Control Gate (SCG)

    Moon-Sik SEO  Tetsuo ENDOH  

     
    PAPER

      Vol:
    E95-C No:5
      Page(s):
    891-897

    Recently, the 3-D vertical Floating Gate (FG) type NAND cell arrays with the Sidewall Control Gate (SCG), such as ESCG, DC-SF and S-SCG, are receiving attention to overcome the reliability issues of Charge Trap (CT) type device. Using this novel cell structure, highly reliable flash cell operations were successfully implemented without interference effect on the FG type cell. However, the 3-D vertical FG type cell has large cell size by about 60% for the cylindrical FG structure. In this point of view, we intensively investigate the scalability of the FG width of the 3-D vertical FG NAND cells. In case of the planar FG type NAND cell, the FG height cannot be scaled down due to the necessity of obtaining sufficient coupling ratio and high program speed. In contrast, for the 3-D vertical FG NAND with SCG, the FG is formed cylindrically, which is fully covered with surrounded CG, and very high CG coupling ratio can be achieved. As results, the scaling of FG width of the 3-D vertical FG NAND cell with S-SCG can be successfully demonstrated at 10 nm regime, which is almost the same as the CT layer of recent BE-SONOS NAND.

  • The Optimum Physical Targets of the 3-Dimensional Vertical FG NAND Flash Memory Cell Arrays with the Extended Sidewall Control Gate (ESCG) Structure

    Moon-Sik SEO  Tetsuo ENDOH  

     
    PAPER

      Vol:
    E94-C No:5
      Page(s):
    686-692

    Recently, the 3-dimensional (3-D) vertical Floating Gate (FG) type NAND flash memory cell arrays with the Extended Sidewall Control Gate (ESCG) was proposed [7]. Using this novel structure, we successfully implemented superior program speed, read current, and less interference characteristics, by the high Control Gate (CG) coupling ratio with less interference capacitance and highly electrical inverted S/D technique. However, the process stability of the ESCG structure has not been sufficiently confirmed such as the variations of the physical dimensions. In this paper, we intensively investigated the electrical dependency according to the physical dimensions of ESCG, such as the line and spacing of ESCG and the thickness of barrier oxide. Using the 2-dimentional (2-D) TCAD simulations, we compared the basic characteristics of the FG type flash cell operation, in the aspect of program speed, read current, and interference effect. Finally, we check the process window and suggest the optimum target of the ESCG structure for reliable flash cell operation. From above all, we confirmed that this 3-dimensional vertical FG NAND flash memory cell arrays using the ESCG structure is the most attractive candidate for terabit 3-D vertical NAND flash cell array.

  • Study on Collective Electron Motion in Si-Nano Dot Floating Gate MOS Capacitor

    Masakazu MURAGUCHI  Yoko SAKURAI  Yukihiro TAKADA  Shintaro NOMURA  Kenji SHIRAISHI  Mitsuhisa IKEDA  Katsunori MAKIHARA  Seiichi MIYAZAKI  Yasuteru SHIGETA  Tetsuo ENDOH  

     
    PAPER

      Vol:
    E94-C No:5
      Page(s):
    730-736

    We propose the collective electron tunneling model in the electron injection process between the Nano Dots (NDs) and the two-dimensional electron gas (2DEG). We report the collective motion of electrons between the 2DEG and the NDs based on the measurement of the Si-ND floating gate structure in the previous studies. However, the origin of this collective motion has not been revealed yet. We evaluate the proposed tunneling model by the model calculation. We reveal that our proposed model reproduces the collective motion of electrons. The insight obtained by our model shows new viewpoints for designing future nano-electronic devices.

  • Formation of Pd Nanodots Induced by Remote Hydrogen Plasma and Its Application to Floating Gate MOS Memories

    Kazuhiro SHIMANOE  Katsunori MAKIHARA  Mitsuhisa IKEDA  Seiichi MIYAZAKI  

     
    PAPER

      Vol:
    E92-C No:5
      Page(s):
    616-619

    We have studied the formation of Pd-nanodots on SiO2 from ultrathin Pd films being exposed to remote hydrogen plasma at room temperature, in which parameters such as the gas pressure and input power to generate H2 plasma and the Pd film thickness were selected to get some insights into surface migration of Pd atoms induced with atomic hydrogen irradiation and resultant agglomeration with cohesive action. The areal dot density was controlled in the range from 3.4 to 6.51011 cm - 2 while the dot size distribution was changed from 7 to 1.5 in average dot height with 40% variation in full-width at half maximum. We also fabricated MOS capacitors with a Pd-nanodots floating gate and confirmed the flat-band voltage shift in capacitance-voltage characteristic due to electron injection to and emission from the dots floating gate.

  • Leakage Current and Floating Gate Capacitor Matching Test

    Weidong TIAN  Joe R. TROGOLO  Bob TODD  

     
    INVITED PAPER

      Vol:
    E91-C No:8
      Page(s):
    1315-1320

    Capacitor mismatch is an important device parameter for precision analog applications. In the last ten years, the floating gate measurement technique has been widely used for its characterization. In this paper we describe the impact of leakage current on the technique. The leakage can come from, for example, thin gate oxide MOSFETs or high dielectric constant capacitors in advanced technologies. SPICE simulation, bench measurement, analytical model and numerical analyses are presented to illustrate the problem and key contributing factors. Criteria for accurate capacitor systematic and random mismatch characterization are developed, and practical methods of increasing measurement accuracy are discussed.

  • Detection of CMOS Open Node Defects by Frequency Analysis

    Hiroyuki MICHINISHI  Tokumi YOKOHIRA  Takuji OKAMOTO  Toshifumi KOBAYASHI  Tsutomu HONDO  

     
    LETTER-Dependable Computing

      Vol:
    E90-D No:3
      Page(s):
    685-687

    A method to detect open node defects that cannot be detected by the conventional IDDQ test method has previously been proposed employing a sinusoidal wave superposed on the DC supply voltage. The present paper proposes a strategy to improve the detectability of the test method by means of frequency analysis of the supply current. In this strategy, defects are detected by determining whether secondary harmonics of the sinusoidal wave exist in the supply current. The effectiveness of the method is confirmed by experiments on two CMOS NAND gate packages (SSIs).

  • Charging and Discharging Characteristics of Stacked Floating Gates of Silicon Quantum Dots

    Taku SHIBAGUCHI  Mitsuhisa IKEDA  Hideki MURAKAMI  Seiichi MIYAZAKI  

     
    PAPER-Nanomaterials and Quantum-Effect Devices

      Vol:
    E88-C No:4
      Page(s):
    709-712

    We have fabricated Al-gate MOS capacitors with a Si quantum-dots (Si-QDs) floating gate, the number of dots was changed in the range of 1.6-4.81011 cm-2 in areal density with repeating the formation of Si dots and their surface oxidation a couple of times. The capacitance-voltage (C-V) characteristics of Si-QDs floating gate MOS capacitors on p-Si(100) confirm that, with increasing number of dots density, the flat-band voltage shift due to electron charging in Si-QDs is increased and the accumulation capacitance is decreased. Also, in the negative bias region beyond the flat-band condition, the voltage shift in the C-V curves due to the emission of valence electrons from intrinsic Si-QDs was observed with no hysterisis presumably because holes generated in Si-QDs can smoothly recombine with electrons tunneling through the 2.8 nm-thick bottom SiO2. In addition, we have demonstrated the charge retention characteristic improves in the Si-QDs stacked structure.

  • CMOS Floating Gate Defect Detection Using Supply Current Test with DC Power Supply Superposed by AC Component

    Hiroyuki MICHINISHI  Tokumi YOKOHIRA  Takuji OKAMOTO  Toshifumi KOBAYASHI  Tsutomu HONDO  

     
    PAPER-Fault Detection

      Vol:
    E87-D No:3
      Page(s):
    551-556

    This paper proposes a new supply current test method for detecting floating gate defects in CMOS ICs. In the method, unusual increase of the supply current caused by defects is promoted by superposing an AC component on the DC power supply. Feasibility of the test is examined by some experiments on four DUTs with an intentionally caused defect. The results showed that our method could detect clearly all the defects, one of which may be detected by neither any functional logic test nor any conventional supply current test.

  • Review of Device Technologies of Flash Memories

    Takahiro OHNAKADO  Natsuo AJIKA  

     
    INVITED PAPER-Flash Memories

      Vol:
    E84-C No:6
      Page(s):
    724-733

    This paper reviews device technologies of flash memories, whose market has grown explosively due to the advantages of: (1) their low cost provided by availability of the single-transistor type cell with adoption of block-erase operation; (2) high functionality as electrically erasable and programmable non-volatile memories; and (3) high reliability with the mature floating gate technology. As for fast-random-access flash memories, their scaling issue, including a multi-level-cell technology, is discussed, and technologies for low power consumption, which is highly demanded for mobile electronic equipment, their major application, are described. Furthermore, device technologies of serial-access flash memories, which have achieved low cost with cell-size reduction, are also reviewed. Finally, a future promising technology of the NROM concept, which achieves a multi-storage-cell with low voltage operation and a simple process, is introduced.

  • New Non-Volatile Analog Memory Circuits Using PWM Methods

    Shigeo KINOSHITA  Takashi MORIE  Makoto NAGATA  Atsushi IWATA  

     
    PAPER-Non-Binary Architectures

      Vol:
    E82-C No:9
      Page(s):
    1655-1661

    This paper proposes non-volatile analog memory circuits using pulse-width modulation (PWM) methods. The conventional analog memory using floating gate device has a trade-off between programming speed and precision because of the constant width of write pulses. The proposed circuits attain high programming speed with high precision by using PWM write pulses. Three circuits are proposed and their performance is evaluated using SPICE simulation. The simulation results show that fast programming time less than 20 µs, high updating resolution of 11 bits, and high precision more than 7 bits are achieved.

  • A New Characterization Method for Accurate Capacitor Matching Measurements Using Pseudo-Floating Gate Test Structures in Submicron CMOS and BICMOS Technologies

    Olivier ROUX dit BUISSON  Gerard MORIN  Frederic PAILLARDET  Eric MAZALEYRAT  

     
    PAPER

      Vol:
    E82-C No:4
      Page(s):
    624-629

    In deep submicron CMOS and BICMOS technologies, antenna effects affect floating gate charge of usual floating gate test structures, dedicated to capacitor matching measurement. In this paper a new pseudo-floating gate test structure is designed. After test structure and modeling presentation, testing method and results are given for several capacitor layouts (poly-poly and metal-metal).

  • Multi-Input Floating Gate Differential Amplifier and Applications to Intelligent Sensors

    Takeyasu SAKAI  Hiromasa NAGAI  Takashi MATSUMOTO  

     
    PAPER

      Vol:
    E82-A No:2
      Page(s):
    335-340

    Multi-input floating gate differential amplifier (FGDA) is proposed which can perform any convolution operation with differential structure and feedback loop. All operations are in the voltage mode. Only one terminal is required for the negative feedback which can suppress distortions due to mismatches of active elements. Possible applications include intelligent image sensor, where fully parallel DCT operation can be performed. A prototype chip is fabricated which is functional. A preliminary test result is reported.

  • Self-Learning Analog Neural Network LSI with High-Resolution Non-Volatile Analog Memory and a Partially-Serial Weight-Update Architecture

    Takashi MORIE  Osamu FUJITA  Kuniharu UCHIMURA  

     
    PAPER-Neural Networks and Chips

      Vol:
    E80-C No:7
      Page(s):
    990-995

    A self-learning analog neural network LSI with non-volatile analog memory which can be updated with more than 13-bit resolution has been designed, fabricated and tasted for the first time. The non-volatile memory is attained by a new floating-gate MOSFET device that has a charge injection part and an accumulation part separated by a high resistance. We also propose a partially-serial weight-update architecture in which the plural synapse circuits use a weight-update circuit in common to reduce the circuit area. A prototype chip fabricated using a 1.3-µm double-poly CMOS process includes 50 synapse elements and its computational power is 10 MCPS. The weights can be updated at a rate of up to 40 kHz. This chip can be used to implement backpropagation networks, deterministic Boltzmann machines, and Hopfield networks with Hebbian learning.

  • Hardware Implementation of New Analog Memory for Neural Networks

    Koji NAKAJIMA  Shigeo SATO  Tomoyasu KITAURA  Junichi MUROTA  Yasuji SAWADA  

     
    PAPER-Integrated Electronics

      Vol:
    E78-C No:1
      Page(s):
    101-105

    We have fabricated a new analog memory with a floating gate as a key component to store synaptic weights for integrated artificial neural networks. The new analog memory comprises a tunnel junction (poly-Si/poly-si oxide/poly-Si sandwich structure), a thin-film transistor, two capacitors, and a floating gate MOSFET. The diffusion of the charges injected through the tunnel junction is controlled by switching operation of the thin-film transistor, and we refer to the new analog memory as switched diffusion analog memory (SDAM). The obtained characteristics of SDAM are a fast switching speed and an improved linearity between the potential of the floating gate and the number of pulse inputs. SDAM can be used in a neural network in which write/erase and read operations are performed simultaneously.