The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] fluctuation(64hit)

21-40hit(64hit)

  • Verification of Stable Circuit Operation of 180 nm Current Controlled MOS Current Mode Logic under Threshold Voltage Fluctuation

    Masashi KAMIYANAGI  Takuya IMAMOTO  Takeshi SASAKI  Hyoungjun NA  Tetsuo ENDOH  

     
    PAPER

      Vol:
    E94-C No:5
      Page(s):
    760-766

    We have succeeded in fabricating 180 nm Current Controlled MOS Current Mode Logic (CC-MCML) and verified the stable circuit operation of 180 nm CC-MCML under threshold voltage fluctuations by measurement. The performance stability of the CC-MCML inverter under the fluctuations of threshold voltage of NMOS and PMOS is evaluated from the viewpoint of diminishing the bias offset voltage ΔVB. The ΔVB, that is defined as (base voltage of output waveform) - (base voltage of input waveform), is a key design parameter for differential circuit. It is shown that when the threshold voltage of NMOS fluctuates in the range of 0.53 V to 0.69 V, and threshold voltage of PMOS fluctuates in the range of -0.47 V to -0.67 V, the CC-MCML technique is able to suppress ΔVB within only 30 mV, where as the conventional MCML technique caused maximum ΔVB of 1.0 V. In this paper, it is verified for the first time that the fabricated CC-MCML is more tolerant against the fluctuations of threshold voltages than the conventional MCML.

  • The Impact of Current Controlled-MOS Current Mode Logic/Magnetic Tunnel Junction Hybrid Circuit for Stable and High-Speed Operation

    Tetsuo ENDOH  Masashi KAMIYANAGI  Masakazu MURAGUCHI  Takuya IMAMOTO  Takeshi SASAKI  

     
    PAPER

      Vol:
    E94-C No:5
      Page(s):
    743-750

    In order to realize Integrated Circuits (IC) with operation over the 10 GHz range, conventional CMOS logic faces critical issues, such as increasing power consumption, and difficulty to aggressively scale the device size and so on. To overcome this issue, we have proposed Current Controlled-MOS Current Mode Logic (CC-MCML) to realize the reduction of power consumption and the enhancement of the operation speed in logic circuits without scaling the gate length of the MOSFET, and confirmed the performance of these circuits both theoretically and experimentally. In the CC-MCML it is extremely important to control the input voltage of the MOSFET used as the constant current source in order to make the base voltage of the input signal and the output signal equivalent. In this paper, we propose CC-MCML/MTJ (Magnetic Tunnel Junction) circuit, which is one type of nonvolatile memory hybrid circuit technology. A more stable and precise operation is realized by cutting the range of the input voltage of the constant current source, and it is shown that the operation of CC-MCML/MTJ Hybrid Circuit enables us to suppress the base voltage difference due to the Vth fluctuation in comparison with the conventional CC-MCML. These results imply the high potential of Si-CMOS/Spintronics Hybrid technologies for future IC.

  • A Fixed Point Theorem in Weak Topology for Successively Recurrent System of Fuzzy-Set-Valued Nonlinear Mapping Equations and Its Application to Ring Nonlinear Network Systems

    Kazuo HORIUCHI  

     
    PAPER-Circuit Theory

      Vol:
    E94-A No:4
      Page(s):
    1059-1066

    On uniformly convex real Banach spaces, a fixed point theorem in weak topology for successively recurrent system of fuzzy-set-valued nonlinear mapping equations and its application to ring nonlinear network systems are theoretically discussed in detail. An arbitrarily-level likelihood signal estimation is then established.

  • A Time-Slicing Ring Oscillator for Capturing Time-Dependent Delay Degradation and Power Supply Voltage Fluctuation

    Takumi UEZONO  Kazuya MASU  Takashi SATO  

     
    PAPER

      Vol:
    E93-C No:3
      Page(s):
    324-331

    A time-slicing ring oscillator (TSRO) which captures time-dependent delay degradation due to periodic transient voltage drop on a power supply network is proposed. An impact of the supply voltage fluctuations, including voltage drop and overshoot, on logic circuit delay is evaluated as a change of oscillation frequency. The TSRO is designed using standard logic cells so that it can be placed almost anywhere in a digital circuit wherein supply voltage fluctuation is concerned. We also propose a new procedure for reconstructing supply voltage waveform. The procedure enables us to accurately monitor time-dependent, effective supply voltages. The -1 dB bandwidth of the TSRO is simulated to be 15.7 GHz, and measured time resolution is 131 ps. Measurement results of a test chip using 90-nm standard CMOS process successfully proved the feasibility of both delay degradation and effective supply voltage fluctuation measurements. Measurement of spatial voltage drop fluctuation is achieved.

  • A Fixed Point Theorem in Weak Topology for Successively Recurrent System of Set-Valued Mapping Equations and Its Applications

    Kazuo HORIUCHI  

     
    PAPER-Nonlinear Problems

      Vol:
    E92-A No:10
      Page(s):
    2554-2559

    Let us introduce n ( ≥ 2) mappings fi (i=1,,n ≡ 0) defined on reflexive real Banach spaces Xi-1 and let fi:Xi-1 → Yi be completely continuous on bounded convex closed subsets Xi-1(0) ⊂ Xi-1. Moreover, let us introduce n set-valued mappings Fi : Xi-1 Yi → Fc(Xi) (the family of all non-empty compact subsets of Xi), (i=1,,n ≡ 0). Here, we have a fixed point theorem in weak topology on the successively recurrent system of set-valued mapping equations:xi ∈ Fi(xi-1, fi(xi-1)), (i=1,,n ≡ 0). This theorem can be applied immediately to analysis of the availability of system of circular networks of channels undergone by uncertain fluctuations and to evaluation of the tolerability of behaviors of those systems.

  • Rapid Compensation of Temperature Fluctuation Effect for Multichannel Sound Field Reproduction System

    Yuki YAI  Shigeki MIYABE  Hiroshi SARUWATARI  Kiyohiro SHIKANO  Yosuke TATEKURA  

     
    PAPER

      Vol:
    E91-A No:6
      Page(s):
    1329-1336

    In this paper, we propose a computationally efficient method of compensating temperature for the transaural stereo. The conventional method can be used to estimate the change in impulse responses caused by the fluctuation of temperature with high accuracy. However, the large amount of computation required makes real-time implementation difficult. Focusing on the fact that the amount of compensation depends on the length of the impulse response, we reduce the computation required by segmenting the impulse response. We segment the impulse responses in the time domain and estimate the effect of temperature fluctuation for each of the segments. By joining the processed segments, we obtain the compensated impulse response of the whole length. Experimental results show that the proposed method can reduce the computation required by a factor of nine without degradation of the accuracy.

  • Performance Evaluation of Next Generation Free-Space Optical Communication System

    Kamugisha KAZAURA  Kazunori OMAE  Toshiji SUZUKI  Mitsuji MATSUMOTO  Edward MUTAFUNGWA  Tadaaki MURAKAMI  Koichi TAKAHASHI  Hideki MATSUMOTO  Kazuhiko WAKAMORI  Yoshinori ARIMOTO  

     
    PAPER

      Vol:
    E90-C No:2
      Page(s):
    381-388

    Free-space optical communication systems can provide high-speed, improved capacity, cost effective and easy to deploy wireless networks. Experimental investigation on the next generation free-space optical (FSO) communication system utilizing seamless connection of free-space and optical fiber links is presented. A compact antenna which utilizes a miniature fine positioning mirror (FPM) for high-speed beam control and steering is described. The effect of atmospheric turbulence on the beam angle-of-arrival (AOA) fluctuations is shown. The FPM is able to mitigate the power fluctuations at the fiber coupling port caused by this beam angle-of-arrival fluctuations. Experimental results of the FSO system capable of offering stable performance in terms of measured bit-error-rate (BER) showing error free transmission at 2.5 Gbps over extended period of time and improved fiber received power are presented. Also presented are performance results showing stable operation when increasing the FSO communication system data rate from 2.5 Gbps to 10 Gbps as well as WDM experiments.

  • New Switching Control for Synchronous Rectifications in Low-Voltage Paralleled Converter System without Voltage and Current Fluctuations

    Hiroshi SHIMAMORI  Teruhiko KOHAMA  Tamotsu NINOMIYA  

     
    PAPER-Electronic Circuits

      Vol:
    E88-C No:3
      Page(s):
    395-402

    Paralleled converter system with synchronous rectifiers (SRs) causes several problems such as surge voltage, inhalation current and circulating current. Generally, the system stops operation of the SRs in light load to avoid these problems. However, simultaneously, large voltage fluctuations in the output of the modules are occurred due to forward voltage drop of diode. The fluctuations cause serious faults to the semiconductor devices working in very low voltage such as CPU and VLSI. Moreover, the voltage fluctuations generate unstable current fluctuations in the paralleled converter system with current-sharing control. This paper proposes new switching control methods for rectifiers to reduce the voltage and current fluctuations. The effectiveness of the proposed methods is confirmed by computer simulation and experimental results.

  • A Refined Fixed Point Theorem for Recurrent System of Fuzzy-Set-Valued Nonlinear Mapping Equations and Its Application to Ring Nonlinear Network Systems

    Kazuo HORIUCHI  

     
    PAPER

      Vol:
    E87-A No:9
      Page(s):
    2308-2313

    Let us introduce n ( 2) nonlinear mappings fi (i = 1,2,,n) defined on complete linear metric spaces (Xi-1,ρ) (i = 1,2,,n), respectively, and let fi:Xi-1 Xi be completely continuous on bounded convex closed subsets Xi-1, (i = 1,2,,n 0), such that fi() . Moreover, let us introduce n fuzzy-set-valued nonlinear mappings Fi:Xi-1Xi {a family of all non-empty closed compact fuzzy subsets of Xi}. Here, by introducing arbitrary constant βi (0,1], for every integer i (i = 1,2,,n 0), separately, we have a fixed point theorem on the recurrent system of βi -level fuzzy-set-valued mapping equations: xi Fiβi(xi-1, fi(xi-1)), (i = 1,2,,n 0), where the fuzzy set Fi is characterized by a membership function µFi(xi):Xi [0,1], and the βi -level set Fiβi of the fuzzy set Fi is defined as Fiβi {ξi Xi |µFi (ξi) βi}, for any constant βi (0,1]. This theorem can be applied immediately to discussion for characteristics of ring nonlinear network systems disturbed by undesirable uncertain fluctuations and to extremely fine estimation of available behaviors of those disturbed systems. In this paper, its mathematical situation and proof are discussed, in detail.

  • Self-Organizing Map-Based Analysis of IP-Network Traffic in Terms of Time Variation of Self-Similarity: A Detrended Fluctuation Analysis Approach

    Masao MASUGI  

     
    PAPER-Nonlinear Problems

      Vol:
    E87-A No:6
      Page(s):
    1546-1554

    This paper describes an analysis of IP-network traffic in terms of the time variation of self-similarity. To get a comprehensive view in analyzing the degree of long-range dependence (LRD) of IP-network traffic, this paper used a self-organizing map, which provides a way to map high-dimensional data onto a low-dimensional domain. Also, in the LRD-based analysis, this paper employed detrended fluctuation analysis (DFA), which is applicable to the analysis of long-range power-law correlations or LRD in non-stationary time-series signals. In applying this method to traffic analysis, this paper performed two kinds of traffic measurement: one based on IP-network traffic flowing into NTT Musashino R&D center (Tokyo, Japan) from the Internet and the other based on IP-network traffic flowing through at an interface point between an access provider (Tokyo, Japan) and the Internet. Based on sequential measurements of IP-network traffic, this paper derived corresponding values for the LRD-related parameter α of measured traffic. As a result, we found that the characteristic of self-similarity seen in the measured traffic fluctuated over time, with different time variation patterns for two measurement locations. In training the self-organizing map, this paper used three parameters: two α values for different plot ranges, and Shannon-based entropy, which reflects the degree of concentration of measured time-series data. We visually confirmed that the traffic data could be projected onto the map in accordance with the traffic properties, resulting in a combined depiction of the effects of the degree of LRD and network utilization rates. The proposed method can deal with multi-dimensional parameters, projecting its results onto a two-dimensional space in which the projected data positions give us an effective depiction of network conditions at different times.

  • Statistical Gate-Delay Modeling with Intra-Gate Variability

    Kenichi OKADA  Kento YAMAOKA  Hidetoshi ONODERA  

     
    PAPER-Parasitics and Noise

      Vol:
    E86-A No:12
      Page(s):
    2914-2922

    This paper proposes a model to calculate statistical gate-delay variation caused by intra-chip and inter-chip variabilities. The variation of each gate delay directly influences the circuit-delay variation, so it is important to characterize each gate-delay variation accurately. Every transistor in a gate affects transient characteristics of the gate, so it is indispensable to consider an intra-gate variability for the modeling of gate-delay variation. This effect is not captured in a statistical delay analysis reported so far. Our model considers the intra-gate variability by sensitivity constants. We evaluate our modeling accuracy, and we show some simulated results of a circuit delay variation.

  • A Fixed Point Theorem for Recurrent System of Fuzzy-Set-Valued Nonlinear Mapping Equations

    Kazuo HORIUCHI  

     
    PAPER-Neuro, Fuzzy, GA

      Vol:
    E86-A No:9
      Page(s):
    2256-2261

    Let us introduce n ( 2) nonlinear mappings fi (i = 1,2,,n) defined on complete linear metric spaces (Xi-1,ρ) (i = 1,2,,n), respectively, and let fi: Xi-1 Xi be completely continuous on bounded convex closed subsets Xi-1,(i = 1,2,,n 0), such that fi() . Moreover, let us introduce n fuzzy-set-valued nonlinear mappings Fi: Xi-1 Xi {a family of all non-empty closed compact fuzzy subsets of Xi}. Here, we have a fixed point theorem on the recurrent system of β-level fuzzy-set-valued mapping equations: xi Fiβ(xi-1,fi(xi-1)), (i = 1,2,,n 0), where the fuzzy set Fi is characterized by a membership function µFi(xi): Xi [0,1], and the β-level set Fiβ of the fuzzy set Fi is defined as Fiβ {ξi Xi | µFi(ξi) β}, for any constant β (0,1]. This theorem can be applied immediately to discussion for characteristics of ring nonlinear network systems disturbed by undesirable uncertain fluctuations and to fine estimation of available behaviors of those disturbed systems. In this paper, its mathematical situation and proof are discussed, in detail.

  • Thermodynamic Behavior of a Nano-Sized Magnetic Grain near the Superparamagnetic Limit

    Jian QIN  Dan WEI  

     
    PAPER

      Vol:
    E86-C No:9
      Page(s):
    1825-1829

    A combined theory of the micromagnetic and Monte Carlo simulations is established to analyze the thermal property of a nano-sized magnetic grain. The Langevin equation of a grain's magnetic moment is the Landau-Lifshitz equation augmented by a "random-field" term representing the thermal-agitated force. The angular distribution of the magnetic moment of the grain is studied via its time evolution process. The switching of the magnetic moment vector between two energy-minimum states is observed. A simple analytical expression is obtained for the simulated attempt frequency f0, which is related to the magnetic constant of the nano-grain, and agrees well with the phenomenological value.

  • Realistic Delay Calculation Based on Measured Intra-Chip and Inter-Chip Variabilities with the Size Dependence

    Kenichi OKADA  Hidetoshi ONODERA  

     
    PAPER

      Vol:
    E86-A No:4
      Page(s):
    746-751

    The main purpose of our method is to obtain realistic worst-case delay in statistical timing analyses. This paper proposes a method of statistical delay calculation based on measured intra-chip and inter-chip variabilities. We present a modeling and extracting method of transistor characteristics for the intra-chip variability and the inter-chip variability. In the modeling of the intra-chip variability, it is important to consider a gate-size dependence by which the amount of intra-chip variation is affected. This effect is not captured in a statistical delay analysis reported so far. Our method proposes a method for modeling of the device variability and statistical delay calculation with consideration of the size dependence, and uses a response surface method (RSM) to calculate a delay variation with low processing cost. We evaluate the accuracy of our method, and we show some experimental results the variation of a circuit delay characterized by the measured variances of transistor currents.

  • Three Dimensional MOSFET Simulation for Analyzing Statistical Dopant-Induced Fluctuations Associated with Atomistic Process Simulator

    Tatsuya EZAKI  Takeo IKEZAWA  Akio NOTSU  Katsuhiko TANAKA  Masami HANE  

     
    INVITED PAPER

      Vol:
    E86-C No:3
      Page(s):
    409-415

    A realistic 3-D process/device simulation method was developed for investigating the fluctuation in device characteristics induced by the statistical nature of the number and position of discrete dopant atoms. Monte Carlo procedures are applied for both ion implantation and dopant diffusion/activation simulations. Atomistic potential profile for device simulation is calculated from discrete dopant atom positions by incorporating the long-range part of Coulomb potential. This simulation was used to investigate the variations in characteristics of sub-100 nm CMOS devices induced by realistic dopant fluctuations considering practical device fabrication processes. In particular, sensitivity analysis of the threshold voltage fluctuation was performed in terms of the independent dopant contribution, such as that of the dopant in the source/drain or channel region.

  • The Process Modeling Hierarchy: Connecting Atomistic Calculations to Nanoscale Behavior

    Scott T. DUNHAM  Pavel FASTENKO  Zudian QIN  Milan DIEBEL  

     
    INVITED PAPER

      Vol:
    E86-C No:3
      Page(s):
    276-283

    In this work, we review our recent efforts to make effective use of atomistic calculations for the advancement of VLSI process simulation. We focus on three example applications: the behavior of implanted fluorine, arsenic diffusion and activation, and the impact of charge interactions on doping fluctuations.

  • Statistical Threshold Voltage Fluctuation Analysis by Monte Carlo Ion Implantation Method

    Yoshinori ODA  Yasuyuki OHKURA  Kaina SUZUKI  Sanae ITO  Hirotaka AMAKAWA  Kenji NISHI  

     
    PAPER

      Vol:
    E86-C No:3
      Page(s):
    416-420

    A new analysis method for random dopant induced threshold voltage fluctuations by using Monte Carlo ion implantation were presented. The method was applied to investigate Vt fluctuations due to statistical variation of pocket dopant profile in 0.1µm MOSFET's by 3D process-device simulation system. This method is very useful to analyze a statistical fluctuation in sub-100 nm MOSFET's efficiently.

  • Sound Reproduction System Including Adaptive Compensation of Temperature Fluctuation Effect for Broad-Band Sound Control

    Yosuke TATEKURA  Hiroshi SARUWATARI  Kiyohiro SHIKANO  

     
    PAPER-Applications of Signal Processing

      Vol:
    E85-A No:8
      Page(s):
    1851-1860

    We describe a method of compensating temperature fluctuation by a linear-time-warping processing in a sound reproduction system. This technique is applied to impulse responses of room transfer functions, to achieve a high-quality sound reproduction system, particularly one that treats high-frequency components. First, the impulse responses are measured before and after temperature fluctuation, and the former are converted to the latter by the proposed process. Next, we design inverse filters for the system, and evaluate the improvement of the reproduction accuracy and spectrum distortion. By the compensation method, we can improve the reproduction accuracy at any frequency. Moreover, we propose an adaptive algorithm for the estimation of a suitable warping ratio, using the observed signal of reproduced sound obtained at only one control point. Using the proposed algorithm, we can improve the reproduction accuracy at each control point by about 14 dB, in which a difference in temperature is 1.4.

  • Analysis of Boron Penetration and Gate Depletion Using Dual-Gate PMOSFETs for High Performance G-Bit DRAM Design

    Norikatsu TAKAURA  Ryo NAGAI  Hisao ASAKURA  Satoru YAMADA  Shin'ichiro KIMURA  

     
    PAPER

      Vol:
    E85-C No:5
      Page(s):
    1138-1145

    We developed a method for analysis of boron penetration and gate depletion using N+ and P+ dual-gate PMOSFETs. An N+ gate PMOSFETs, which is immune to boron penetration and gate depletion, exhibited the threshold voltage shifts and fluctuation in P+ gate PMOSFETs fabricated using identical N- substrates. We showed the importance of Vth fluctuation analysis and found that the Vth fluctuation in N+ gate PMOSFETs was negligible, but, the Vth fluctuation in P+ gate PMOSFETs was significant, indicating that the Vth fluctuation in P+ gate PMOSFETs was dominated by boron penetration. It was also shown, for the first time, that boron penetration occurred with gate depletion, and gate depletion must be very strong to suppress boron penetration. The dual-gate PMOSFET method makes it possible to select high-performance G-bit DRAM fabrication processes that are robust against Vth fluctuation.

  • High Quality Speech Synthesis Based on the Reproduction of the Randomness in Speech Signals

    Naofumi AOKI  

     
    PAPER-Image & Signal Processing

      Vol:
    E84-A No:9
      Page(s):
    2198-2206

    A high quality speech synthesis technique based on the wavelet subband analysis of speech signals was newly devised for enhancing the naturalness of synthesized voiced consonant speech. The technique reproduces a speech characteristic of voiced consonant speech that shows unvoiced feature remarkably in the high frequency subbands. For mixing appropriately the unvoiced feature into voiced speech, a noise inclusion procedure that employed the discrete wavelet transform was proposed. This paper also describes a developed speech synthesizer that employs several random fractal techniques. These techniques were employed for enhancing especially the naturalness of synthesized purely voiced speech. Three types of fluctuations, (1) pitch period fluctuation, (2) amplitude fluctuation, and (3) waveform fluctuation were treated in the speech synthesizer. In addition, instead of a normal impulse train, a triangular pulse was used as a simple model for the glottal excitation pulse. For the compensation for the degraded frequency characteristic of the triangular pulse that overdecreases than the spectral -6 dB/oct characteristic required for the glottal excitation pulse, the random fractal interpolation technique was applied. In order to evaluate the developed speech synthesis system, psychoacoustic experiments were carried out. The experiments especially focused on how the mixed excitation scheme effectively contributed to enhancing the naturalness of voiced consonant speech. In spite that the proposed techniques were just a little modification for enhancing the conventional LPC (linear predictive coding) speech synthesizer, the subjective evaluation suggested that the system could effectively gain the naturalness of the synthesized speech that tended to degrade in the conventional LPC speech synthesis scheme.

21-40hit(64hit)