The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] form(3161hit)

161-180hit(3161hit)

  • An Equivalent Expression for the Wyner-Ziv Source Coding Problem Open Access

    Tetsunao MATSUTA  Tomohiko UYEMATSU  

     
    PAPER-Information Theory

      Pubricized:
    2021/09/09
      Vol:
    E105-A No:3
      Page(s):
    353-362

    We consider the coding problem for lossy source coding with side information at the decoder, which is known as the Wyner-Ziv source coding problem. The goal of the coding problem is to find the minimum rate such that the probability of exceeding a given distortion threshold is less than the desired level. We give an equivalent expression of the minimum rate by using the chromatic number and notions of covering of a set. This allows us to analyze the coding problem in terms of graph coloring and covering.

  • Formal Verification of Fair Exchange Based on Bitcoin Smart Contracts

    Cheng SHI  Kazuki YONEYAMA  

     
    PAPER

      Pubricized:
    2021/10/25
      Vol:
    E105-A No:3
      Page(s):
    242-267

    Smart contracts are protocols that can automatically execute a transaction including an electronic contract when a condition is satisfied without a trusted third party. In a representative use-case, a smart contract is executed when multiple parties fairly trade on a blockchain asset. On blockchain systems, a smart contract can be regarded as a system participant, responding to the information received, receiving and storing values, and sending information and values outwards. Also, a smart contract can temporarily keep assets, and always perform operations in accordance with prior rules. Many cryptocurrencies have implemented smart contracts. At POST2018, Atzei et al. give formulations of seven fair exchange protocols using smart contract on Bitcoin: oracle, escrow, intermediated payment, timed commitment, micropayment channels, fair lotteries, and contingent payment. However, they only give an informal discussion on security. In this paper, we verify the fairness of their seven protocols by using the formal verification tool ProVerif. As a result, we show that five protocols (the oracle, intermediated payment, timed commitment, micropayment channels and fair lotteries protocols) satisfy fairness, which were not proved formally. Also, we re-find known attacks to break fairness of two protocols (the escrow and contingent payment protocols). For the escrow protocol, we formalize the two-party scheme and the three-party scheme with an arbitrator, and show that the two-party scheme does not satisfy fairness as Atzei et al. showed. For the contingent payment protocol, we formalize the protocol with the non-interactive zero-knowledge proof (NIZK), and re-find the attack shown by Campanelli et al. at CCS 2017. Also, we show that a countermeasure with subversion NIZK against the attack works properly while it is not formally proved.

  • Competent Triple Identification for Knowledge Graph Completion under the Open-World Assumption

    Esrat FARJANA  Natthawut KERTKEIDKACHORN  Ryutaro ICHISE  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2021/12/02
      Vol:
    E105-D No:3
      Page(s):
    646-655

    The usefulness and usability of existing knowledge graphs (KGs) are mostly limited because of the incompleteness of knowledge compared to the growing number of facts about the real world. Most existing ontology-based KG completion methods are based on the closed-world assumption, where KGs are fixed. In these methods, entities and relations are defined, and new entity information cannot be easily added. In contrast, in open-world assumptions, entities and relations are not previously defined. Thus there is a vast scope to find new entity information. Despite this, knowledge acquisition under the open-world assumption is challenging because most available knowledge is in a noisy unstructured text format. Nevertheless, Open Information Extraction (OpenIE) systems can extract triples, namely (head text; relation text; tail text), from raw text without any prespecified vocabulary. Such triples contain noisy information that is not essential for KGs. Therefore, to use such triples for the KG completion task, it is necessary to identify competent triples for KGs from the extracted triple set. Here, competent triples are the triples that can contribute to add new information to the existing KGs. In this paper, we propose the Competent Triple Identification (CTID) model for KGs. We also propose two types of feature, namely syntax- and semantic-based features, to identify competent triples from a triple set extracted by a state-of-the-art OpenIE system. We investigate both types of feature and test their effectiveness. It is found that the performance of the proposed features is about 20% better compared to that of the ReVerb system in identifying competent triples.

  • A Study on Cognitive Transformation in the Process of Acquiring Movement Skills for Changing Running Direction

    Masatoshi YAMADA  Masaki OHATA  Daisuke KAKOI  

     
    PAPER

      Pubricized:
    2021/11/11
      Vol:
    E105-D No:3
      Page(s):
    565-577

    In ball games, acquiring skills to change the direction becomes necessary. For revealing the mechanism of skill acquisition in terms of the relevant field, it would be necessary to take an approach regarding players' cognition as well as body movements measurable from outside. In the phase of change-of-direction performance that this study focuses on, cognitive factors including the prediction of opposite players' movements and judgements of the situation have significance. The purpose of this study was to reveal cognitive transformation in the skill acquisition process for change-of-direction performance. The survey was conducted for three months from August 29 to November 28, 2020, and those surveyed were seven university freshmen belonging to women's basketball club of M University. The way to analyze verbal reports collected in order to explore the changes in the players' cognition is described in Sect.2. In Sect.3, we made a plot graph showing temporal changes in respective factors based on coding outcomes for verbal reports. Consequently, as cognitive transformation in the skill acquisition process for change-of-direction performance, four items such as (1) goal setting for skill acquisition, (2) experience of change in running direction, (3) experience of speed and acceleration, and (4) experience of the movement of lower extremities such as legs and hip joints were suggested as common cognitive transformation. In addition, cognitive transformation varied by the degree of skill acquisition for change-of-direction performance. It was indicated that paying too much attention to body feelings including the position of and shift in the center of gravity in the body posed an obstacle to the skill acquisition for change-of-direction performance.

  • Effectiveness of “Neither-Good-Nor-Bad” Information on User's Trust in Agents in Presence of Numerous Options

    Yuta SUZUMURA  Jun-ichi IMAI  

     
    PAPER

      Pubricized:
    2021/12/07
      Vol:
    E105-D No:3
      Page(s):
    557-564

    The effect of provision of “Neither-Good-Nor-Bad” (NGNB) information on the perceived trustworthiness of agents has been investigated in previous studies. The experimental results have revealed several conditions under which the provision of NGNB information works effectively to make users perceive greater trust of agents. However, the experiments in question were carried out in a situation in which a user is able to choose, with the agent's advice, one of a limited number of options. In practical problems, we are often at a loss as to which to choose because there are too many possible options and it is not easy to narrow them down. Furthermore, in the above-mentioned previous studies, it was easy to predict the size of profits that a user would obtain because its pattern was also limited. This prompted us, in this paper, to investigate the effect of provision of NGNB information on the users' trust of agents under conditions where it appears to the users that numerous options are available. Our experimental results reveal that an agent that reliably provides NGNB information tends to gain greater user trust in a situation where it appears to the users that there are numerous options and their consequences, and it is not easy to predict the size of profits. However, in contradiction to the previous study, the results in this paper also reveal that stable provision of NGNB information in the context of numerous options is less effective in a situation where it is harder to obtain larger profits.

  • Status Update for Accurate Remote Estimation: Centralized and Decentralized Schemes Open Access

    Jingzhou SUN  Yuxuan SUN  Sheng ZHOU  Zhisheng NIU  

     
    INVITED PAPER

      Pubricized:
    2021/08/17
      Vol:
    E105-B No:2
      Page(s):
    131-139

    In this work, we consider a remote estimation system where a remote controller estimates the status of heterogeneous sensing devices with the information delivered over wireless channels. Status of heterogeneous devices changes at different speeds. With limited wireless resources, estimating as accurately as possible requires careful design of status update schemes. Status update schemes can be divided into two classes: centralized and decentralized. In centralized schemes, a central scheduler coordinates devices to avoid potential collisions. However, in decentralized schemes where each device updates on its own, update decisions can be made by using the current status which is unavailable in centralized schemes. The relation between these two schemes under the heterogeneous devices case is unclear, and thus we study these two schemes in terms of the mean square error (MSE) of the estimation. For centralized schemes, since the scheduler does not have the current status of each device, we study policies where the scheduling decisions are based on age of information (AoI), which measures the staleness of the status information held in the controller. The optimal scheduling policy is provided, along with the corresponding MSE. For decentralized schemes, we consider deviation-based policies with which only devices with estimation deviations larger than prescribed thresholds may update, and the others stay idle. We derive an approximation of the minimum MSE under the deviation-based policies and show that it is e/3 of the minimum MSE under the AoI-based policies. Simulation results further show that the actual minimum MSEs of these two policies are even closer than that shown by the approximation, which indicates that the cost of collision in the deviation-based policy cancels out the gain from exploiting status deviations.

  • Hierarchical Preference Hash Network for News Recommendation

    Jianyong DUAN  Liangcai LI  Mei ZHANG  Hao WANG  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/10/22
      Vol:
    E105-D No:2
      Page(s):
    355-363

    Personalized news recommendation is becoming increasingly important for online news platforms to help users alleviate information overload and improve news reading experience. A key problem in news recommendation is learning accurate user representations to capture their interest. However, most existing news recommendation methods usually learn user representation only from their interacted historical news, while ignoring the clustering features among users. Here we proposed a hierarchical user preference hash network to enhance the representation of users' interest. In the hash part, a series of buckets are generated based on users' historical interactions. Users with similar preferences are assigned into the same buckets automatically. We also learn representations of users from their browsed news in history part. And then, a Route Attention is adopted to combine these two parts (history vector and hash vector) and get the more informative user preference vector. As for news representation, a modified transformer with category embedding is exploited to build news semantic representation. By comparing the hierarchical hash network with multiple news recommendation methods and conducting various experiments on the Microsoft News Dataset (MIND) validate the effectiveness of our approach on news recommendation.

  • Semantic Shilling Attack against Heterogeneous Information Network Based Recommend Systems

    Yizhi REN  Zelong LI  Lifeng YUAN  Zhen ZHANG  Chunhua SU  Yujuan WANG  Guohua WU  

     
    PAPER

      Pubricized:
    2021/11/30
      Vol:
    E105-D No:2
      Page(s):
    289-299

    The recommend system has been widely used in many web application areas such as e-commerce services. With the development of the recommend system, the HIN modeling method replaces the traditional bipartite graph modeling method to represent the recommend system. But several studies have already showed that recommend system is vulnerable to shilling attack (injecting attack). However, the effectiveness of how traditional shilling attack has rarely been studied directly in the HIN model. Moreover, no study has focused on how to enhance shilling attacks against HIN recommend system by using the high-level semantic information. This work analyzes the relationship between the high-level semantic information and the attacking effects in HIN recommend system. This work proves that attack results are proportional to the high-level semantic information. Therefore, we propose a heuristic attack method based on high-level semantic information, named Semantic Shilling Attack (SSA) on a HIN recommend system (HERec). This method injects a specific score into each selected item related to the target in semantics. It ensures transmitting the misleading information towards target items and normal users, and attempts to interfere with the effect of the recommend system. The experiment is dependent on two real-world datasets, and proves that the attacking effect is positively correlate with the number of meta-paths. The result shows that our method is more effective when compared with existing baseline algorithms.

  • Comprehensive Survey of Research on Emerging Communication Technologies from ICETC2020 Open Access

    Takuji TACHIBANA  

     
    INVITED PAPER

      Pubricized:
    2021/08/17
      Vol:
    E105-B No:2
      Page(s):
    98-115

    The 2020 International Conference on Emerging Technologies for Communications (ICETC2020) was held online on December 2nd—4th, 2020, and 213 research papers were accepted and presented in each session. It is expected that the accepted papers will contribute to the development and extension of research in multiple research areas. In this survey paper, all accepted research papers are classified into four research areas: Physical & Fundamental, Communications, Network, and Information Technology & Application, and then research papers are classified into each research topic. For each research area and topic, this survey paper briefly introduces the presented technologies and methods.

  • A Novel Method for Adaptive Beamforming under the Strong Interference Condition

    Zongli RUAN  Hongshu LIAO  Guobing QIAN  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2021/08/02
      Vol:
    E105-A No:2
      Page(s):
    109-113

    In this letter, firstly, a novel adaptive beamformer using independent component analysis (ICA) algorithm is proposed. By this algorithm, the ambiguity of amplitude and phase resulted from blind source separation is removed utilizing the special structure of array manifolds matrix. However, there might exist great calibration error when the powers of interferences are far larger than that of desired signal at many applications such as sonar, radio astronomy, biomedical engineering and earthquake detection. As a result, this will lead to a significant reduction in separation performance. Then, a new method based on the combination of ICA and primary component analysis (PCA) is proposed to recover the desired signal's amplitude under strong interference. Finally, computer simulation is carried out to indicate the effectiveness of our methods. The simulation results show that the proposed methods can obtain higher SNR and more accurate power estimation of desired signal than diagonal loading sample matrix inversion (LSMI) and worst-case performance optimization (WCPO) method.

  • Adaptive Beamforming Switch in Realistic Massive MIMO System with Prototype

    Jiying XU  Yongmei SUN  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2021/07/26
      Vol:
    E105-A No:1
      Page(s):
    72-76

    This letter proposes an adaptive beamforming switch algorithm for realistic massive multiple-input multiple-output (MIMO) systems through prototypes. It is analyzed and identified that a rigid single-mode beamforming regime is hard to maintain superior performance all the time due to no adaption to the inevitable channel variation in practice. In order to cope with this practical issue, the proposed systematic beamforming mechanism is investigated to enable dynamic selection between minimum mean-squared error and grid-of-beams beamforming algorithms, which improves system downlink performance, including throughput and block error rate. The significant performance benefits and realistic feasibility have been validated through the field tests in live networks and theoretical analyses. Meanwhile, the adaptive beamforming switch algorithm is applicable to both fourth and fifth generation time-division duplexing cellular communication system using massive-MIMO technology.

  • Formal Verification for Node-Based Visual Scripts Using Symbolic Model Checking

    Isamu HASEGAWA  Tomoyuki YOKOGAWA  

     
    PAPER-Software System

      Pubricized:
    2021/09/29
      Vol:
    E105-D No:1
      Page(s):
    78-91

    Visual script languages with a node-based interface have commonly been used in the video game industry. We examined the bug database obtained in the development of FINAL FANTASY XV (FFXV), and noticed that several types of bugs were caused by simple mis-descriptions of visual scripts and could therefore be mechanically detected. We propose a method for the automatic verification of visual scripts in order to improve productivity of video game development. Our method can automatically detect those bugs by using symbolic model checking. We show a translation algorithm which can automatically convert a visual script to an input model for NuSMV that is an implementation of symbolic model checking. For a preliminary evaluation, we applied our method to visual scripts used in the production for FFXV. The evaluation results demonstrate that our method can detect bugs of scripts and works well in a reasonable time.

  • Orthogonal Variable Spreading Factor Codes over Finite Fields Open Access

    Shoichiro YAMASAKI  Tomoko K. MATSUSHIMA  

     
    PAPER-Communication Theory and Signals

      Pubricized:
    2021/06/24
      Vol:
    E105-A No:1
      Page(s):
    44-52

    The present paper proposes orthogonal variable spreading factor codes over finite fields for multi-rate communications. The proposed codes have layered structures that combine sequences generated by discrete Fourier transforms over finite fields, and have various code lengths. The design method for the proposed codes and examples of the codes are shown.

  • What Factors Affect the Performance of Software after Migration: A Case Study on Sunway TaihuLight Supercomputer

    Jie TAN  Jianmin PANG  Cong LIU  

     
    LETTER

      Pubricized:
    2021/10/21
      Vol:
    E105-D No:1
      Page(s):
    26-30

    Due to the rapid development of different processors, e.g., x86 and Sunway, software porting between different platforms is becoming more frequent. However, the migrated software's execution efficiency on the target platform is different from that of the source platform, and most of the previous studies have investigated the improvement of the efficiency from the hardware perspective. To the best of our knowledge, this is the first paper to exclusively focus on studying what software factors can result in performance change after software migration. To perform our study, we used SonarQube to detect and measure five software factors, namely Duplicated Lines (DL), Code Smells Density (CSD), Big Functions (BF), Cyclomatic Complexity (CC), and Complex Functions (CF), from 13 selected projects of SPEC CPU2006 benchmark suite. Then, we measured the change of software performance by calculating the acceleration ratio of execution time before (x86) and after (Sunway) software migration. Finally, we performed a multiple linear regression model to analyze the relationship between the software performance change and the software factors. The results indicate that the performance change of software migration from the x86 platform to the Sunway platform is mainly affected by three software factors, i.e., Code Smell Density (CSD), Cyclomatic Complexity (CC), and Complex Functions (CF). The findings can benefit both researchers and practitioners.

  • Study in CSI Correction Localization Algorithm with DenseNet Open Access

    Junna SHANG  Ziyang YAO  

     
    PAPER-Navigation, Guidance and Control Systems

      Pubricized:
    2021/06/23
      Vol:
    E105-B No:1
      Page(s):
    76-84

    With the arrival of 5G and the popularity of smart devices, indoor localization technical feasibility has been verified, and its market demands is huge. The channel state information (CSI) extracted from Wi-Fi is physical layer information which is more fine-grained than the received signal strength indication (RSSI). This paper proposes a CSI correction localization algorithm using DenseNet, which is termed CorFi. This method first uses isolation forest to eliminate abnormal CSI, and then constructs a CSI amplitude fingerprint containing time, frequency and antenna pair information. In an offline stage, the densely connected convolutional networks (DenseNet) are trained to establish correspondence between CSI and spatial position, and generalized extended interpolation is applied to construct the interpolated fingerprint database. In an online stage, DenseNet is used for position estimation, and the interpolated fingerprint database and K-nearest neighbor (KNN) are combined to correct the position of the prediction results with low maximum probability. In an indoor corridor environment, the average localization error is 0.536m.

  • A Survey of Quantum Error Correction Open Access

    Ryutaroh MATSUMOTO  Manabu HAGIWARA  

     
    INVITED SURVEY PAPER-Coding Theory

      Pubricized:
    2021/06/18
      Vol:
    E104-A No:12
      Page(s):
    1654-1664

    This paper surveys development of quantum error correction. With the familiarity with conventional coding theory and tensor product in multi-linear algebra, this paper can be read in a self-contained manner.

  • Formalization and Analysis of Ceph Using Process Algebra

    Ran LI  Huibiao ZHU  Jiaqi YIN  

     
    PAPER-Software System

      Pubricized:
    2021/09/28
      Vol:
    E104-D No:12
      Page(s):
    2154-2163

    Ceph is an object-based parallel distributed file system that provides excellent performance, reliability, and scalability. Additionally, Ceph provides its Cephx authentication system to authenticate users, so that it can identify users and realize authentication. In this paper, we first model the basic architecture of Ceph using process algebra CSP (Communicating Sequential Processes). With the help of the model checker PAT (Process Analysis Toolkit), we feed the constructed model to PAT and then verify several related properties, including Deadlock Freedom, Data Reachability, Data Write Integrity, Data Consistency and Authentication. The verification results show that the original model cannot cater to the Authentication property. Therefore, we formalize a new model of Ceph where Cephx is adopted. In the light of the new verification results, it can be found that Cephx satisfies all these properties.

  • Analysis on Asymptotic Optimality of Round-Robin Scheduling for Minimizing Age of Information with HARQ Open Access

    Zhiyuan JIANG  Yijie HUANG  Shunqing ZHANG  Shugong XU  

     
    INVITED PAPER

      Pubricized:
    2021/07/01
      Vol:
    E104-B No:12
      Page(s):
    1465-1478

    In a heterogeneous unreliable multiaccess network, wherein terminals share a common wireless channel with distinct error probabilities, existing works have shown that a persistent round-robin (RR-P) scheduling policy can be arbitrarily worse than the optimum in terms of Age of Information (AoI) under standard Automatic Repeat reQuest (ARQ). In this paper, practical Hybrid ARQ (HARQ) schemes which are widely-used in today's wireless networks are considered. We show that RR-P is very close to optimum with asymptotically many terminals in this case, by explicitly deriving tight, closed-form AoI gaps between optimum and achievable AoI by RR-P. In particular, it is rigorously proved that for RR-P, under HARQ models concerning fading channels (resp. finite-blocklength regime), the relative AoI gap compared with the optimum is within a constant of 6.4% (resp. 6.2% with error exponential decay rate of 0.5). In addition, RR-P enjoys the distinctive advantage of implementation simplicity with channel-unaware and easy-to-decentralize operations, making it favorable in practice. A further investigation considering constraint imposed on the number of retransmissions is presented. The performance gap is indicated through numerical simulations.

  • Performance Modeling of Bitcoin Blockchain: Mining Mechanism and Transaction-Confirmation Process Open Access

    Shoji KASAHARA  

     
    INVITED PAPER

      Pubricized:
    2021/06/09
      Vol:
    E104-B No:12
      Page(s):
    1455-1464

    Bitcoin is one of popular cryptocurrencies widely used over the world, and its blockchain technology has attracted considerable attention. In Bitcoin system, it has been reported that transactions are prioritized according to transaction fees, and that transactions with high priorities are likely to be confirmed faster than those with low priorities. In this paper, we consider performance modeling of Bitcoin-blockchain system in order to characterize the transaction-confirmation time. We first introduce the Bitcoin system, focusing on proof-of-work, the consensus mechanism of Bitcoin blockchain. Then, we show some queueing models and its analytical results, discussing the implications and insights obtained from the queueing models.

  • Statistical-Mechanical Analysis of Adaptive Volterra Filter with the LMS Algorithm Open Access

    Kimiko MOTONAKA  Tomoya KOSEKI  Yoshinobu KAJIKAWA  Seiji MIYOSHI  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2021/06/01
      Vol:
    E104-A No:12
      Page(s):
    1665-1674

    The Volterra filter is one of the digital filters that can describe nonlinearity. In this paper, we analyze the dynamic behaviors of an adaptive signal-processing system including the Volterra filter by a statistical-mechanical method. On the basis of the self-averaging property that holds when the tapped delay line is assumed to be infinitely long, we derive simultaneous differential equations in a deterministic and closed form, which describe the behaviors of macroscopic variables. We obtain the exact solution by solving the equations analytically. In addition, the validity of the theory derived is confirmed by comparison with numerical simulations.

161-180hit(3161hit)