The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] form(3161hit)

41-60hit(3161hit)

  • Information-Theoretic Perspectives for Simulation-Based Security in Multi-Party Computation

    Mitsugu IWAMOTO  

     
    INVITED PAPER-Cryptography and Information Security

      Pubricized:
    2023/12/01
      Vol:
    E107-A No:3
      Page(s):
    360-372

    Information-theoretic security and computational security are fundamental paradigms of security in the theory of cryptography. The two paradigms interact with each other but have shown different progress, which motivates us to explore the intersection between them. In this paper, we focus on Multi-Party Computation (MPC) because the security of MPC is formulated by simulation-based security, which originates from computational security, even if it requires information-theoretic security. We provide several equivalent formalizations of the security of MPC under a semi-honest model from the viewpoints of information theory and statistics. The interpretations of these variants are so natural that they support the other aspects of simulation-based security. Specifically, the variants based on conditional mutual information and sufficient statistics are interesting because security proofs for those variants can be given by information measures and factorization theorem, respectively. To exemplify this, we show several security proofs of BGW (Ben-Or, Goldwasser, Wigderson) protocols, which are basically proved by constructing a simulator.

  • Ensemble Malware Classifier Considering PE Section Information

    Ren TAKEUCHI  Rikima MITSUHASHI  Masakatsu NISHIGAKI  Tetsushi OHKI  

     
    PAPER

      Pubricized:
    2023/09/19
      Vol:
    E107-A No:3
      Page(s):
    306-318

    The war between cyber attackers and security analysts is gradually intensifying. Owing to the ease of obtaining and creating support tools, recent malware continues to diversify into variants and new species. This increases the burden on security analysts and hinders quick analysis. Identifying malware families is crucial for efficiently analyzing diversified malware; thus, numerous low-cost, general-purpose, deep-learning-based classification techniques have been proposed in recent years. Among these methods, malware images that represent binary features as images are often used. However, no models or architectures specific to malware classification have been proposed in previous studies. Herein, we conduct a detailed analysis of the behavior and structure of malware and focus on PE sections that capture the unique characteristics of malware. First, we validate the features of each PE section that can distinguish malware families. Then, we identify PE sections that contain adequate features to classify families. Further, we propose an ensemble learning-based classification method that combines features of highly discriminative PE sections to improve classification accuracy. The validation of two datasets confirms that the proposed method improves accuracy over the baseline, thereby emphasizing its importance.

  • Correlated Randomness Reduction in Domain-Restricted Secure Two-Party Computation

    Keitaro HIWATASHI  Koji NUIDA  

     
    PAPER

      Pubricized:
    2023/10/04
      Vol:
    E107-A No:3
      Page(s):
    283-290

    Secure two-party computation is a cryptographic tool that enables two parties to compute a function jointly without revealing their inputs. It is known that any function can be realized in the correlated randomness (CR) model, where a trusted dealer distributes input-independent CR to the parties beforehand. Sometimes we can construct more efficient secure two-party protocol for a function g than that for a function f, where g is a restriction of f. However, it is not known in which case we can construct more efficient protocol for domain-restricted function. In this paper, we focus on the size of CR. We prove that we can construct more efficient protocol for a domain-restricted function when there is a “good” structure in CR space of a protocol for the original function, and show a unified way to construct a more efficient protocol in such case. In addition, we show two applications of the above result: The first application shows that some known techniques of reducing CR size for domain-restricted function can be derived in a unified way, and the second application shows that we can construct more efficient protocol than an existing one using our result.

  • An Intra- and Inter-Emotion Transformer-Based Fusion Model with Homogeneous and Diverse Constraints Using Multi-Emotional Audiovisual Features for Depression Detection

    Shiyu TENG  Jiaqing LIU  Yue HUANG  Shurong CHAI  Tomoko TATEYAMA  Xinyin HUANG  Lanfen LIN  Yen-Wei CHEN  

     
    PAPER

      Pubricized:
    2023/12/15
      Vol:
    E107-D No:3
      Page(s):
    342-353

    Depression is a prevalent mental disorder affecting a significant portion of the global population, leading to considerable disability and contributing to the overall burden of disease. Consequently, designing efficient and robust automated methods for depression detection has become imperative. Recently, deep learning methods, especially multimodal fusion methods, have been increasingly used in computer-aided depression detection. Importantly, individuals with depression and those without respond differently to various emotional stimuli, providing valuable information for detecting depression. Building on these observations, we propose an intra- and inter-emotional stimulus transformer-based fusion model to effectively extract depression-related features. The intra-emotional stimulus fusion framework aims to prioritize different modalities, capitalizing on their diversity and complementarity for depression detection. The inter-emotional stimulus model maps each emotional stimulus onto both invariant and specific subspaces using individual invariant and specific encoders. The emotional stimulus-invariant subspace facilitates efficient information sharing and integration across different emotional stimulus categories, while the emotional stimulus specific subspace seeks to enhance diversity and capture the distinct characteristics of individual emotional stimulus categories. Our proposed intra- and inter-emotional stimulus fusion model effectively integrates multimodal data under various emotional stimulus categories, providing a comprehensive representation that allows accurate task predictions in the context of depression detection. We evaluate the proposed model on the Chinese Soochow University students dataset, and the results outperform state-of-the-art models in terms of concordance correlation coefficient (CCC), root mean squared error (RMSE) and accuracy.

  • Graph Linear Notations with Regular Expressions

    Ren MIMURA  Kengo MIYAMOTO  Akio FUJIYOSHI  

     
    PAPER

      Pubricized:
    2023/10/11
      Vol:
    E107-D No:3
      Page(s):
    312-319

    This paper proposes graph linear notations and an extension of them with regular expressions. Graph linear notations are a set of strings to represent labeled general graphs. They are extended with regular expressions to represent sets of graphs by specifying chosen parts for selections and repetitions of certain induced subgraphs. Methods for the conversion between graph linear notations and labeled general graphs are shown. The NP-completeness of the membership problem for graph regular expressions is proved.

  • Invisible Digital Image by Thin-Film Interference of Niobium Oxide Using Its Periodic Repeatability Open Access

    Shuichi MAEDA  Akihiro FUKAMI  Kaiki YAMAZAKI  

     
    INVITED PAPER

      Pubricized:
    2023/08/22
      Vol:
    E107-C No:2
      Page(s):
    42-46

    There are several benefits of the information that is invisible to the human eye. “Invisible” here means that it can be visualized or quantified when using instruments. For example, it can improve security without compromising product design. We have succeeded in making an invisible digital image on a metal substrate using periodic repeatability by thin-film interference of niobium oxides. Although this digital information is invisible in the visible light wavelength range of 400-800nm, but detectable in the infrared light that of 800-1150nm. This technology has a potential to be applied to anti-counterfeiting and traceability.

  • Robust Visual Tracking Using Hierarchical Vision Transformer with Shifted Windows Multi-Head Self-Attention

    Peng GAO  Xin-Yue ZHANG  Xiao-Li YANG  Jian-Cheng NI  Fei WANG  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2023/10/20
      Vol:
    E107-D No:1
      Page(s):
    161-164

    Despite Siamese trackers attracting much attention due to their scalability and efficiency in recent years, researchers have ignored the background appearance, which leads to their inapplicability in recognizing arbitrary target objects with various variations, especially in complex scenarios with background clutter and distractors. In this paper, we present a simple yet effective Siamese tracker, where the shifted windows multi-head self-attention is produced to learn the characteristics of a specific given target object for visual tracking. To validate the effectiveness of our proposed tracker, we use the Swin Transformer as the backbone network and introduced an auxiliary feature enhancement network. Extensive experimental results on two evaluation datasets demonstrate that the proposed tracker outperforms other baselines.

  • Lightweight and Fast Low-Light Image Enhancement Method Based on PoolFormer

    Xin HU  Jinhua WANG  Sunhan XU  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2023/10/05
      Vol:
    E107-D No:1
      Page(s):
    157-160

    Images captured in low-light environments have low visibility and high noise, which will seriously affect subsequent visual tasks such as target detection and face recognition. Therefore, low-light image enhancement is of great significance in obtaining high-quality images and is a challenging problem in computer vision tasks. A low-light enhancement model, LLFormer, based on the Vision Transformer, uses axis-based multi-head self-attention and a cross-layer attention fusion mechanism to reduce the complexity and achieve feature extraction. This algorithm can enhance images well. However, the calculation of the attention mechanism is complex and the number of parameters is large, which limits the application of the model in practice. In response to this problem, a lightweight module, PoolFormer, is used to replace the attention module with spatial pooling, which can increase the parallelism of the network and greatly reduce the number of model parameters. To suppress image noise and improve visual effects, a new loss function is constructed for model optimization. The experiment results show that the proposed method not only reduces the number of parameters by 49%, but also performs better in terms of image detail restoration and noise suppression compared with the baseline model. On the LOL dataset, the PSNR and SSIM were 24.098dB and 0.8575 respectively. On the MIT-Adobe FiveK dataset, the PSNR and SSIM were 27.060dB and 0.9490. The evaluation results on the two datasets are better than the current mainstream low-light enhancement algorithms.

  • Node-to-Set Disjoint Paths Problem in Cross-Cubes

    Rikuya SASAKI  Hiroyuki ICHIDA  Htoo Htoo Sandi KYAW  Keiichi KANEKO  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2023/10/06
      Vol:
    E107-D No:1
      Page(s):
    53-59

    The increasing demand for high-performance computing in recent years has led to active research on massively parallel systems. The interconnection network in a massively parallel system interconnects hundreds of thousands of processing elements so that they can process large tasks while communicating among others. By regarding the processing elements as nodes and the links between processing elements as edges, respectively, we can discuss various problems of interconnection networks in the framework of the graph theory. Many topologies have been proposed for interconnection networks of massively parallel systems. The hypercube is a very popular topology and it has many variants. The cross-cube is such a topology, which can be obtained by adding one extra edge to each node of the hypercube. The cross-cube reduces the diameter of the hypercube, and allows cycles of odd lengths. Therefore, we focus on the cross-cube and propose an algorithm that constructs disjoint paths from a node to a set of nodes. We give a proof of correctness of the algorithm. Also, we show that the time complexity and the maximum path length of the algorithm are O(n3 log n) and 2n - 3, respectively. Moreover, we estimate that the average execution time of the algorithm is O(n2) based on a computer experiment.

  • A Coded Aperture as a Key for Information Hiding Designed by Physics-in-the-Loop Optimization

    Tomoki MINAMATA  Hiroki HAMASAKI  Hiroshi KAWASAKI  Hajime NAGAHARA  Satoshi ONO  

     
    PAPER

      Pubricized:
    2023/09/28
      Vol:
    E107-D No:1
      Page(s):
    29-38

    This paper proposes a novel application of coded apertures (CAs) for visual information hiding. CA is one of the representative computational photography techniques, in which a patterned mask is attached to a camera as an alternative to a conventional circular aperture. With image processing in the post-processing phase, various functions such as omnifocal image capturing and depth estimation can be performed. In general, a watermark embedded as high-frequency components is difficult to extract if captured outside the focal length, and defocus blur occurs. Installation of a CA into the camera is a simple solution to mitigate the difficulty, and several attempts are conducted to make a better design for stable extraction. On the contrary, our motivation is to design a specific CA as well as an information hiding scheme; the secret information can only be decoded if an image with hidden information is captured with the key aperture at a certain distance outside the focus range. The proposed technique designs the key aperture patterns and information hiding scheme through evolutionary multi-objective optimization so as to minimize the decryption error of a hidden image when using the key aperture while minimizing the accuracy when using other apertures. During the optimization process, solution candidates, i.e., key aperture patterns and information hiding schemes, are evaluated on actual devices to account for disturbances that cannot be considered in optical simulations. Experimental results have shown that decoding can be performed with the designed key aperture and similar ones, that decrypted image quality deteriorates as the similarity between the key and the aperture used for decryption decreases, and that the proposed information hiding technique works on actual devices.

  • Location and History Information Aided Efficient Initial Access Scheme for High-Speed Railway Communications

    Chang SUN  Xiaoyu SUN  Jiamin LI  Pengcheng ZHU  Dongming WANG  Xiaohu YOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/09/14
      Vol:
    E107-B No:1
      Page(s):
    214-222

    The application of millimeter wave (mmWave) directional transmission technology in high-speed railway (HSR) scenarios helps to achieve the goal of multiple gigabit data rates with low latency. However, due to the high mobility of trains, the traditional initial access (IA) scheme with high time consumption is difficult to guarantee the effectiveness of the beam alignment. In addition, the high path loss at the coverage edge of the millimeter wave remote radio unit (mmW-RRU) will also bring great challenges to the stability of IA performance. Fortunately, the train trajectory in HSR scenarios is periodic and regular. Moreover, the cell-free network helps to improve the system coverage performance. Based on these observations, this paper proposes an efficient IA scheme based on location and history information in cell-free networks, where the train can flexibly select a set of mmW-RRUs according to the received signal quality. We specifically analyze the collaborative IA process based on the exhaustive search and based on location and history information, derive expressions for IA success probability and delay, and perform the numerical analysis. The results show that the proposed scheme can significantly reduce the IA delay and effectively improve the stability of IA success probability.

  • Investigation of a Non-Contact Bedsore Detection System

    Tomoki CHIBA  Yusuke ASANO  Masaharu TAKAHASHI  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2023/09/12
      Vol:
    E107-B No:1
      Page(s):
    206-213

    The proportion of persons over 65 years old is projected to increase worldwide between 2022 and 2050. The increasing burden on medical staff and the shortage of human resources are growing problems. Bedsores are injuries caused by prolonged pressure on the skin and stagnation of blood flow. The more the damage caused by bedsores progresses, the longer the treatment period becomes. Moreover, patients require surgery in some serious cases. Therefore, early detection is essential. In our research, we are developing a non-contact bedsore detection system using electromagnetic waves at 10.5GHz. In this paper, we extracted appropriate information from a scalogram and utilized it to detect the sizes of bedsores. In addition, experiments using a phantom were conducted to confirm the basic operation of the bedsore detection system. As a result, using the approximate curves and lines obtained from prior analysis data, it was possible to estimate the volume of each defected area, as well as combinations of the depth of the defected area and the length of the defected area. Moreover, the experiments showed that it was possible to detect bedsore presence and estimate their sizes, although the detection results had slight variations.

  • A Survey of Information-Centric Networking: The Quest for Innovation Open Access

    Hitoshi ASAEDA  Kazuhisa MATSUZONO  Yusaku HAYAMIZU  Htet Htet HLAING  Atsushi OOKA  

     
    INVITED PAPER-Network

      Pubricized:
    2023/08/22
      Vol:
    E107-B No:1
      Page(s):
    139-153

    Information-Centric Networking (ICN) is an innovative technology that provides low-loss, low-latency, high-throughput, and high-reliability communications for diversified and advanced services and applications. In this article, we present a technical survey of ICN functionalities such as in-network caching, routing, transport, and security mechanisms, as well as recent research findings. We focus on CCNx, which is a prominent ICN protocol whose message types are defined by the Internet Research Task Force. To facilitate the development of functional code and encourage application deployment, we introduce an open-source software platform called Cefore that facilitates CCNx-based communications. Cefore consists of networking components such as packet forwarding and in-network caching daemons, and it provides APIs and a Python wrapper program that enables users to easily develop CCNx applications for on Cefore. We introduce a Mininet-based Cefore emulator and lightweight Docker containers for running CCNx experiments on Cefore. In addition to exploring ICN features and implementations, we also consider promising research directions for further innovation.

  • CCTSS: The Combination of CNN and Transformer with Shared Sublayer for Detection and Classification

    Aorui GOU  Jingjing LIU  Xiaoxiang CHEN  Xiaoyang ZENG  Yibo FAN  

     
    PAPER-Image

      Pubricized:
    2023/07/06
      Vol:
    E107-A No:1
      Page(s):
    141-156

    Convolutional Neural Networks (CNNs) and Transformers have achieved remarkable performance in detection and classification tasks. Nevertheless, their feature extraction cannot consider both local and global information, so the detection and classification performance can be further improved. In addition, more and more deep learning networks are designed as more and more complex, and the amount of computation and storage space required is also significantly increased. This paper proposes a combination of CNN and transformer, and designs a local feature enhancement module and global context modeling module to enhance the cascade network. While the local feature enhancement module increases the range of feature extraction, the global context modeling is used to capture the feature maps' global information. To decrease the model complexity, a shared sublayer is designed to realize the sharing of weight parameters between the adjacent convolutional layers or cross convolutional layers, thereby reducing the number of convolutional weight parameters. Moreover, to effectively improve the detection performance of neural networks without increasing network parameters, the optimal transport assignment approach is proposed to resolve the problem of label assignment. The classification loss and regression loss are the summations of the cost between the demander and supplier. The experiment results demonstrate that the proposed Combination of CNN and Transformer with Shared Sublayer (CCTSS) performs better than the state-of-the-art methods in various datasets and applications.

  • Prime-Factor GFFT Architecture for Fast Frequency Domain Decoding of Cyclic Codes

    Yanyan CHANG  Wei ZHANG  Hao WANG  Lina SHI  Yanyan LIU  

     
    LETTER-Coding Theory

      Pubricized:
    2023/07/10
      Vol:
    E107-A No:1
      Page(s):
    174-177

    This letter introduces a prime-factor Galois field Fourier transform (PF-GFFT) architecture to frequency domain decoding (FDD) of cyclic codes. Firstly, a fast FDD scheme is designed which converts the original single longer Fourier transform to a multi-dimensional smaller transform. Furthermore, a ladder-shift architecture for PF-GFFT is explored to solve the rearrangement problem of input and output data. In this regard, PF-GFFT is considered as a lower order spectral calculation scheme, which has sufficient preponderance in reducing the computational complexity. Simulation results show that PF-GFFT compares favorably with the current general GFFT, simplified-GFFT (S-GFFT), and circular shifts-GFFT (CS-GFFT) algorithms in time-consuming cost, and is nearly an order of magnitude or smaller than them. The superiority is a benefit to improving the decoding speed and has potential application value in decoding cyclic codes with longer code lengths.

  • A Unified Software and Hardware Platform for Machine Learning Aided Wireless Systems

    Dody ICHWANA PUTRA  Muhammad HARRY BINTANG PRATAMA  Ryotaro ISSHIKI  Yuhei NAGAO  Leonardo LANANTE JR  Hiroshi OCHI  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2023/08/22
      Vol:
    E106-A No:12
      Page(s):
    1493-1503

    This paper presents a unified software and hardware wireless AI platform (USHWAP) for developing and evaluating machine learning in wireless systems. The platform integrates multi-software development such as MATLAB and Python with hardware platforms like FPGA and SDR, allowing for flexible and scalable device and edge computing application development. The USHWAP is implemented and validated using FPGAs and SDRs. Wireless signal classification, wireless LAN sensing, and rate adaptation are used as examples to showcase the platform's capabilities. The platform enables versatile development, including software simulation and real-time hardware implementation, offering flexibility and scalability for multiple applications. It is intended to be used by wireless-AI researchers to develop and evaluate intelligent algorithms in a laboratory environment.

  • Antennas Measurement for Millimeter Wave 5G Wireless Applications Using Radio Over Fiber Technologies Open Access

    Satoru KUROKAWA  Michitaka AMEYA  Yui OTAGAKI  Hiroshi MURATA  Masatoshi ONIZAWA  Masahiro SATO  Masanobu HIROSE  

     
    INVITED PAPER

      Pubricized:
    2023/09/19
      Vol:
    E106-B No:12
      Page(s):
    1313-1321

    We have developed an all-optical fiber link antenna measurement system for a millimeter wave 5th generation mobile communication frequency band around 28 GHz. Our developed system consists of an optical fiber link an electrical signal transmission system, an antenna-coupled-electrode electric-field (EO) sensor system for 28GHz-band as an electrical signal receiving system, and a 6-axis vertically articulated robot with an arm length of 1m. Our developed optical fiber link electrical signal transmission system can transmit the electrical signal of more than 40GHz with more than -30dBm output level. Our developed EO sensor can receive the electrical signal from 27GHz to 30GHz. In addition, we have estimated a far field antenna factor of the EO sensor system for the 28GHz-band using an amplitude center modified antenna factor estimation equation. The estimated far field antenna factor of the sensor system is 83.2dB/m at 28GHz.

  • IGDM: An Information Geometric Difference Mapping Method for Signal Detection in Non-Gaussian Alpha-Stable Distributed Noise

    Jiansheng BAI  Jinjie YAO  Yating HOU  Zhiliang YANG  Liming WANG  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2023/08/25
      Vol:
    E106-B No:12
      Page(s):
    1392-1401

    Modulated signal detection has been rapidly advancing in various wireless communication systems as it's a core technology of spectrum sensing. To address the non-Gaussian statistical of noise in radio channels, especially its pulse characteristics in the time/frequency domain, this paper proposes a method based on Information Geometric Difference Mapping (IGDM) to solve the signal detection problem under Alpha-stable distribution (α-stable) noise and improve performance under low Generalized Signal-to-Noise Ratio (GSNR). Scale Mixtures of Gaussians is used to approximate the probability density function (PDF) of signals and model the statistical moments of observed data. Drawing on the principles of information geometry, we map the PDF of different types of data into manifold space. Through the application of statistical moment models, the signal is projected as coordinate points within the manifold structure. We then design a dual-threshold mechanism based on the geometric mean and use Kullback-Leibler divergence (KLD) to measure the information distance between coordinates. Numerical simulations and experiments were conducted to prove the superiority of IGDM for detecting multiple modulated signals in non-Gaussian noise, the results show that IGDM has adaptability and effectiveness under extremely low GSNR.

  • Multi-Segment Verification FrFT Frame Synchronization Detection in Underwater Acoustic Communications

    Guojin LIAO  Yongpeng ZUO  Qiao LIAO  Xiaofeng TIAN  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/09/01
      Vol:
    E106-B No:12
      Page(s):
    1501-1509

    Frame synchronization detection before data transmission is an important module which directly affects the lifetime and coexistence of underwater acoustic communication (UAC) networks, where linear frequency modulation (LFM) is a frame preamble signal commonly used for synchronization. Unlike terrestrial wireless communications, strong bursty noise frequently appears in UAC. Due to the long transmission distance and the low signal-to-noise ratio, strong short-distance bursty noise will greatly reduce the accuracy of conventional fractional fourier transform (FrFT) detection. We propose a multi-segment verification fractional fourier transform (MFrFT) preamble detection algorithm to address this challenge. In the proposed algorithm, 4 times of adjacent FrFT operations are carried out. And the LFM signal identifies by observing the linear correlation between two lines connected in pair among three adjacent peak points, called ‘dual-line-correlation mechanism’. The accurate starting time of the LFM signal can be found according to the peak frequency of the adjacent FrFT. More importantly, MFrFT do not result in an increase in computational complexity. Compared with the conventional FrFT detection method, experimental results show that the proposed algorithm can effectively distinguish between signal starting points and bursty noise with much lower error detection rate, which in turn minimizes the cost of retransmission.

  • User Verification Using Evoked EEG by Invisible Visual Stimulation

    Atikur RAHMAN  Nozomu KINJO  Isao NAKANISHI  

     
    PAPER-Biometrics

      Pubricized:
    2023/06/19
      Vol:
    E106-A No:12
      Page(s):
    1569-1576

    Person authentication using biometric information has recently become popular among researchers. User management based on biometrics is more reliable than that using conventional methods. To secure private information, it is necessary to build continuous authentication-based user management systems. Brain waves are suitable biometric modalities for continuous authentication. This study is based on biometric authentication using brain waves evoked by invisible visual stimuli. Invisible visual stimulation is considered over visual stimulation to overcome the obstacles faced by a user when using a system. Invisible stimuli are confirmed by changing the intensity of the image and presenting high-speed stimulation. To ensure invisibility, stimuli of different intensities were tested, and the stimuli with an intensity of 5% was confirmed to be invisible. To improve the verification performance, a continuous wavelet transform was introduced over the Fourier transform because it extracts both time and frequency information from the brain wave. The scalogram obtained by the wavelet transform was used as an individual feature and for synchronizing the template and test data. Furthermore, to improve the synchronization performance, the waveband was split based on the power distribution of the scalogram. A performance evaluation using 20 subjects showed an equal error rate of 3.8%.

41-60hit(3161hit)