The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] form(3161hit)

281-300hit(3161hit)

  • Analysis of Antenna Performance Degradation due to Coupled Electromagnetic Interference from Nearby Circuits

    Hosang LEE  Jawad YOUSAF  Kwangho KIM  Seongjin MUN  Chanseok HWANG  Wansoo NAH  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2019/08/27
      Vol:
    E103-C No:3
      Page(s):
    110-118

    This paper analyzes and compares two methods to estimate electromagnetically coupled noises introduced to an antenna due to the nearby circuits at a circuit design stage. One of them is to estimate the power spectrum, and the other one is to estimate the active S11 parameter at the victim antenna, respectively, and both of them use simulated standard S-parameters for the electromagnetic coupling in the circuit. They also need the assumed or measured excitation of noise sources. To confirm the validness of the two methods, an evaluation board consisting of an antenna and noise sources were designed and fabricated in which voltage controlled oscillator (VCO) chips are placed as noise sources. The generated electromagnetic noises are transferred to an antenna via loop-shaped transmission lines, degrading the performance of the antenna. In this paper, detailed analysis procedures are described using the evaluation board, and it is shown that the two methods are equivalent to each other in terms of the induced voltages in the antenna. Finally, a procedure to estimate antenna performance degradation at the design stage is summarized.

  • Nonparametric Distribution Prior Model for Image Segmentation

    Ming DAI  Zhiheng ZHOU  Tianlei WANG  Yongfan GUO  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2019/10/21
      Vol:
    E103-D No:2
      Page(s):
    416-423

    In many real application scenarios of image segmentation problems involving limited and low-quality data, employing prior information can significantly improve the segmentation result. For example, the shape of the object is a kind of common prior information. In this paper, we introduced a new kind of prior information, which is named by prior distribution. On the basis of nonparametric statistical active contour model, we proposed a novel distribution prior model. Unlike traditional shape prior model, our model is not sensitive to the shapes of object boundary. Using the intensity distribution of objects and backgrounds as prior information can simplify the process of establishing and solving the model. The idea of constructing our energy function is as follows. During the contour curve convergence, while maximizing distribution difference between the inside and outside of the active contour, the distribution difference between the inside/outside of contour and the prior object/background is minimized. We present experimental results on a variety of synthetic and natural images. Experimental results demonstrate the potential of the proposed method that with the information of prior distribution, the segmentation effect and speed can be both improved efficaciously.

  • Virtual Address Remapping with Configurable Tiles in Image Processing Applications

    Jae Young HUR  

     
    PAPER-Computer System

      Pubricized:
    2019/10/17
      Vol:
    E103-D No:2
      Page(s):
    309-320

    The conventional linear or tiled address maps can degrade performance and memory utilization when traffic patterns are not matched with an underlying address map. The address map is usually fixed at design time. Accordingly, it is difficult to adapt to given applications. Modern embedded system usually accommodates memory management units (MMUs). As a result, depending on virtual address patterns, the system can suffer from performance overheads due to page table walks. To alleviate this performance overhead, we propose to cluster and rearrange tiles to construct an MMU-aware configurable address map. To construct the clustered tiled map, the generic tile number remapping algorithm is presented. In the presented scheme, an address map is configured based on the adaptive dimensioning algorithm. Considering image processing applications, a design, an analysis, an implementation, and simulations are conducted. The results indicate the proposed method can improve the performance and the memory utilization with moderate hardware costs.

  • Formal Verification of a Decision-Tree Ensemble Model and Detection of Its Violation Ranges

    Naoto SATO  Hironobu KURUMA  Yuichiroh NAKAGAWA  Hideto OGAWA  

     
    PAPER-Dependable Computing

      Pubricized:
    2019/11/20
      Vol:
    E103-D No:2
      Page(s):
    363-378

    As one type of machine-learning model, a “decision-tree ensemble model” (DTEM) is represented by a set of decision trees. A DTEM is mainly known to be valid for structured data; however, like other machine-learning models, it is difficult to train so that it returns the correct output value (called “prediction value”) for any input value (called “attribute value”). Accordingly, when a DTEM is used in regard to a system that requires reliability, it is important to comprehensively detect attribute values that lead to malfunctions of a system (failures) during development and take appropriate countermeasures. One conceivable solution is to install an input filter that controls the input to the DTEM and to use separate software to process attribute values that may lead to failures. To develop the input filter, it is necessary to specify the filtering condition for the attribute value that leads to the malfunction of the system. In consideration of that necessity, we propose a method for formally verifying a DTEM and, according to the result of the verification, if an attribute value leading to a failure is found, extracting the range in which such an attribute value exists. The proposed method can comprehensively extract the range in which the attribute value leading to the failure exists; therefore, by creating an input filter based on that range, it is possible to prevent the failure. To demonstrate the feasibility of the proposed method, we performed a case study using a dataset of house prices. Through the case study, we also evaluated its scalability and it is shown that the number and depth of decision trees are important factors that determines the applicability of the proposed method.

  • Constant-Q Deep Coefficients for Playback Attack Detection

    Jichen YANG  Longting XU  Bo REN  

     
    LETTER-Speech and Hearing

      Pubricized:
    2019/11/14
      Vol:
    E103-D No:2
      Page(s):
    464-468

    Under the framework of traditional power spectrum based feature extraction, in order to extract more discriminative information for playback attack detection, this paper proposes a feature by making use of deep neural network to describe the nonlinear relationship between power spectrum and discriminative information. Namely, constant-Q deep coefficients (CQDC). It relies on constant-Q transform, deep neural network and discrete cosine transform. In which, constant-Q transform is used to convert signal from the time domain into the frequency domain because it is a long-term transform that can provide more frequency detail, deep neural network is used to extract more discriminative information to discriminate playback speech from genuine speech and discrete cosine transform is used to decorrelate among the feature dimensions. ASVspoof 2017 corpus version 2.0 is used to evaluate the performance of CQDC. The experimental results show that CQDC outperforms the existing power spectrum obtained from constant-Q transform based features, and equal error can reduce from 19.18% to 51.56%. In addition, we found that discriminative information of CQDC hides in all frequency bins, which is different from commonly used features.

  • A Practical Secret Key Generation Scheme Based on Wireless Channel Characteristics for 5G Networks

    Qiuhua WANG  Mingyang KANG  Guohua WU  Yizhi REN  Chunhua SU  

     
    PAPER-Network Security

      Pubricized:
    2019/10/16
      Vol:
    E103-D No:2
      Page(s):
    230-238

    Secret key generation based on channel characteristics is an effective physical-layer security method for 5G wireless networks. The issues of how to ensure the high key generation rate and correlation of the secret key under active attack are needed to be addressed. In this paper, a new practical secret key generation scheme with high rate and correlation is proposed. In our proposed scheme, Alice and Bob transmit independent random sequences instead of known training sequences or probing signals; neither Alice nor Bob can decode these random sequences or estimate the channel. User's random sequences together with the channel effects are used as common random source to generate the secret key. With this solution, legitimate users are able to share secret keys with sufficient length and high security under active attack. We evaluate the proposed scheme through both analytic and simulation studies. The results show that our proposed scheme achieves high key generation rate and key security, and is suitable for 5G wireless networks with resource-constrained devices.

  • A Generalized Theory Based on the Turn Model for Deadlock-Free Irregular Networks

    Ryuta KAWANO  Ryota YASUDO  Hiroki MATSUTANI  Michihiro KOIBUCHI  Hideharu AMANO  

     
    PAPER-Computer System

      Pubricized:
    2019/10/08
      Vol:
    E103-D No:1
      Page(s):
    101-110

    Recently proposed irregular networks can reduce the latency for both on-chip and off-chip systems with a large number of computing nodes and thus can improve the performance of parallel applications. However, these networks usually suffer from deadlocks in routing packets when using a naive minimal path routing algorithm. To solve this problem, we focus attention on a lately proposed theory that generalizes the turn model to maintain the network performance with deadlock-freedom. The theorems remain a challenge of applying themselves to arbitrary topologies including fully irregular networks. In this paper, we advance the theorems to completely general ones. Moreover, we provide a feasible implementation of a deadlock-free routing method based on our advanced theorem. Experimental results show that the routing method based on our proposed theorem can improve the network throughput by up to 138 % compared to a conventional deterministic minimal routing method. Moreover, when utilized as the escape path in Duato's protocol, it can improve the throughput by up to 26.3 % compared with the conventional up*/down* routing.

  • Secure Overcomplete Dictionary Learning for Sparse Representation

    Takayuki NAKACHI  Yukihiro BANDOH  Hitoshi KIYA  

     
    PAPER

      Pubricized:
    2019/10/09
      Vol:
    E103-D No:1
      Page(s):
    50-58

    In this paper, we propose secure dictionary learning based on a random unitary transform for sparse representation. Currently, edge cloud computing is spreading to many application fields including services that use sparse coding. This situation raises many new privacy concerns. Edge cloud computing poses several serious issues for end users, such as unauthorized use and leak of data, and privacy failures. The proposed scheme provides practical MOD and K-SVD dictionary learning algorithms that allow computation on encrypted signals. We prove, theoretically, that the proposal has exactly the same dictionary learning estimation performance as the non-encrypted variant of MOD and K-SVD algorithms. We apply it to secure image modeling based on an image patch model. Finally, we demonstrate its performance on synthetic data and a secure image modeling application for natural images.

  • UMMS: Efficient Superpixel Segmentation Driven by a Mixture of Spatially Constrained Uniform Distribution

    Pengyu WANG  Hongqing ZHU  Ning CHEN  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2019/10/02
      Vol:
    E103-D No:1
      Page(s):
    181-185

    A novel superpixel segmentation approach driven by uniform mixture model with spatially constrained (UMMS) is proposed. Under this algorithm, each observation, i.e. pixel is first represented as a five-dimensional vector which consists of colour in CLELAB space and position information. And then, we define a new uniform distribution through adding pixel position, so that this distribution can describe each pixel in input image. Applied weighted 1-Norm to difference between pixels and mean to control the compactness of superpixel. In addition, an effective parameter estimation scheme is introduced to reduce computational complexity. Specifically, the invariant prior probability and parameter range restrict the locality of superpixels, and the robust mean optimization technique ensures the accuracy of superpixel boundaries. Finally, each defined uniform distribution is associated with a superpixel and the proposed UMMS successfully implements superpixel segmentation. The experiments on BSDS500 dataset verify that UMMS outperforms most of the state-of-the-art approaches in terms of segmentation accuracy, regularity, and rapidity.

  • Computationally Efficient DOA Estimation for Massive Uniform Linear Array

    Wei JHANG  Shiaw-Wu CHEN  Ann-Chen CHANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E103-A No:1
      Page(s):
    361-365

    This letter presents an improved hybrid direction of arrival (DOA) estimation scheme with computational efficiency for massive uniform linear array. In order to enhance the resolution of DOA estimation, the initial estimator based on the discrete Fourier transform is applied to obtain coarse DOA estimates by a virtual array extension for one snapshot. Then, by means of a first-order Taylor series approximation to the direction vector with the one initially estimated in a very small region, the iterative fine estimator can find a new direction vector which raises the searching efficiency. Simulation results are provided to demonstrate the effectiveness of the proposed scheme.

  • Free Space Optical Turbo Coded Communication System with Hybrid PPM-OOK Signaling

    Ran SUN  Hiromasa HABUCHI  Yusuke KOZAWA  

     
    PAPER

      Vol:
    E103-A No:1
      Page(s):
    287-294

    For high transmission efficiency, good modulation schemes are expected. This paper focuses on the enhancement of the modulation scheme of free space optical turbo coded system. A free space optical turbo coded system using a new signaling scheme called hybrid PPM-OOK signaling (HPOS) is proposed and investigated. The theoretical formula of the bit error rate of the uncoded HPOS system is derived. The effective information rate performances (i.e. channel capacity) of the proposed HPOS turbo coded system are evaluated through computer simulation in free space optical channel, with weak, moderate, strong scintillation. The performance of the proposed HPOS turbo coded system is compared with those of the conventional OOK (On-Off Keying) turbo coded system and BPPM (Binary Pulse Position Modulation) turbo coded system. As results, the proposed HPOS turbo coded system shows the same tolerance capability to background noise and atmospheric turbulence as the conventional BPPM turbo coded system, and it has 1.5 times larger capacity.

  • Surface Clutter Suppression with FDTD Recovery Signal for Microwave UWB Mammography Open Access

    Kazuki NORITAKE  Shouhei KIDERA  

     
    BRIEF PAPER-Electromagnetic Theory

      Pubricized:
    2019/07/17
      Vol:
    E103-C No:1
      Page(s):
    26-29

    Microwave mammography is a promising alternative to X-ray based imaging modalities, because of its small size, low cost, and cell-friendly exposure. More importantly, this modality enables the suppression of surface reflection clutter, which can be enhanced by introducing accurate surface shape estimations. However, near-field measurements can reduce the shape estimation accuracy, due to a mismatch between the reference and observed waveforms. To mitigate this problem, this study incorporates envelope-based shape estimation and finite-difference time-domain (FDTD)-based waveform correction with a fractional derivative adjustment. Numerical simulations based on realistic breast phantoms derived from magnetic resonance imaging (MRI) show that the proposed method significantly enhances the accuracy of breast surface imaging and the performance of surface clutter rejection.

  • Efficient Supergraph Search Using Graph Coding

    Shun IMAI  Akihiro INOKUCHI  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2019/09/26
      Vol:
    E103-D No:1
      Page(s):
    130-141

    This paper proposes a method for searching for graphs in the database which are contained as subgraphs by a given query. In the proposed method, the search index does not require any knowledge of the query set or the frequent subgraph patterns. In conventional techniques, enumerating and selecting frequent subgraph patterns is computationally expensive, and the distribution of the query set must be known in advance. Subsequent changes to the query set require the frequent patterns to be selected again and the index to be reconstructed. The proposed method overcomes these difficulties through graph coding, using a tree structured index that contains infrequent subgraph patterns in the shallow part of the tree. By traversing this code tree, we are able to rapidly determine whether multiple graphs in the database contain subgraphs that match the query, producing a powerful pruning or filtering effect. Furthermore, the filtering and verification steps of the graph search can be conducted concurrently, rather than requiring separate algorithms. As the proposed method does not require the frequent subgraph patterns and the query set, it is significantly faster than previous techniques; this independence from the query set also means that there is no need to reconstruct the search index when the query set changes. A series of experiments using a real-world dataset demonstrate the efficiency of the proposed method, achieving a search speed several orders of magnitude faster than the previous best.

  • Node-Disjoint Paths Problems in Directed Bijective Connection Graphs

    Keiichi KANEKO  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2019/09/26
      Vol:
    E103-D No:1
      Page(s):
    93-100

    In this paper, we extend the notion of bijective connection graphs to introduce directed bijective connection graphs. We propose algorithms that solve the node-to-set node-disjoint paths problem and the node-to-node node-disjoint paths problem in a directed bijective connection graph. The time complexities of the algorithms are both O(n4), and the maximum path lengths are both 2n-1.

  • Good Group Sparsity Prior for Light Field Interpolation Open Access

    Shu FUJITA  Keita TAKAHASHI  Toshiaki FUJII  

     
    PAPER-Image

      Vol:
    E103-A No:1
      Page(s):
    346-355

    A light field, which is equivalent to a dense set of multi-view images, has various applications such as depth estimation and 3D display. One of the essential problems in light field applications is light field interpolation, i.e., view interpolation. The interpolation accuracy is enhanced by exploiting an inherent property of a light field. One example is that an epipolar plane image (EPI), which is a 2D subset of the 4D light field, consists of many lines, and these lines have almost the same slope in a local region. This structure induces a sparse representation in the frequency domain, where most of the energy resides on a line passing through the origin. On the basis of this observation, we propose a group sparsity prior suitable for light fields to exploit their line structure fully for interpolation. Specifically, we designed the directional groups in the discrete Fourier transform (DFT) domain so that the groups can represent the concentration of the energy, and we thereby formulated an LF interpolation problem as an overlapping group lasso. We also introduce several techniques to improve the interpolation accuracy such as applying a window function, determining group weights, expanding processing blocks, and merging blocks. Our experimental results show that the proposed method can achieve better or comparable quality as compared to state-of-the-art LF interpolation methods such as convolutional neural network (CNN)-based methods.

  • Privacy-Preserving Support Vector Machine Computing Using Random Unitary Transformation

    Takahiro MAEKAWA  Ayana KAWAMURA  Takayuki NAKACHI  Hitoshi KIYA  

     
    PAPER-Image

      Vol:
    E102-A No:12
      Page(s):
    1849-1855

    A privacy-preserving support vector machine (SVM) computing scheme is proposed in this paper. Cloud computing has been spreading in many fields. However, the cloud computing has some serious issues for end users, such as the unauthorized use of cloud services, data leaks, and privacy being compromised. Accordingly, we consider privacy-preserving SVM computing. We focus on protecting visual information of images by using a random unitary transformation. Some properties of the protected images are discussed. The proposed scheme enables us not only to protect images, but also to have the same performance as that of unprotected images even when using typical kernel functions such as the linear kernel, radial basis function (RBF) kernel and polynomial kernel. Moreover, it can be directly carried out by using well-known SVM algorithms, without preparing any algorithms specialized for secure SVM computing. In an experiment, the proposed scheme is applied to a face-based authentication algorithm with SVM classifiers to confirm the effectiveness.

  • Enhancing Physical Layer Security Performance in Downlink Cellular Networks through Cooperative Users

    Shijie WANG  Yuanyuan GAO  Xiaochen LIU  Guangna ZHANG  Nan SHA  Mingxi GUO  Kui XU  

     
    LETTER-Graphs and Networks

      Vol:
    E102-A No:12
      Page(s):
    2008-2014

    In this paper, we explore how to enhance the physical layer security performance in downlink cellular networks through cooperative jamming technology. Idle user equipments (UE) are used to cooperatively transmit jamming signal to confuse eavesdroppers (Eve). We propose a threshold-based jammer selection scheme to decide which idle UE should participate in the transmission of jamming signal. Threshold conditions are carefully designed to decrease interference to legitimate channel, while maintain the interference to the Eves. Moreover, fewer UE are activated, which is helpful for saving energy consumptions of cooperative UEs. Analytical expressions of the connection and secrecy performances are derived, which are validated through Monte Carlo simulations. Theoretical and simulation results reveal that our proposed scheme can improve connection performance, while approaches the secrecy performance of [12]. Furthermore, only 43% idle UEs of [12] are used for cooperative jamming, which helps to decrease energy consumption of network.

  • A Software-based NVM Emulator Supporting Read/Write Asymmetric Latencies

    Atsushi KOSHIBA  Takahiro HIROFUCHI  Ryousei TAKANO  Mitaro NAMIKI  

     
    PAPER-Computer System

      Pubricized:
    2019/07/06
      Vol:
    E102-D No:12
      Page(s):
    2377-2388

    Non-volatile memory (NVM) is a promising technology for low-energy and high-capacity main memory of computers. The characteristics of NVM devices, however, tend to be fundamentally different from those of DRAM (i.e., the memory device currently used for main memory), because of differences in principles of memory cells. Typically, the write latency of an NVM device such as PCM and ReRAM is much higher than its read latency. The asymmetry in read/write latencies likely affects the performance of applications significantly. For analyzing behavior of applications running on NVM-based main memory, most researchers use software-based emulation tools due to the limited number of commercial NVM products. However, these existing emulation tools are too slow to emulate a large-scale, realistic workload or too simplistic to investigate the details of application behavior on NVM with asymmetric read/write latencies. This paper therefore proposes a new NVM emulation mechanism that is not only light-weight but also aware of a read/write latency gap in NVM-based main memory. We implemented the prototype of the proposed mechanism for the Intel CPU processors of the Haswell architecture. We also evaluated its accuracy and performed case studies for practical benchmarks. The results showed that our prototype accurately emulated write-latencies of NVM-based main memory: it emulated the NVM write latencies in a range from 200 ns to 1000 ns with negligible errors from 0.2% to 1.1%. We confirmed that the use of our emulator enabled us to successfully estimate performance of practical workloads for NVM-based main memory, while an existing light-weight emulation model misestimated.

  • Authenticated-Encrypted Analog-to-Digital Conversion Based on Non-Linearity and Redundancy Transformation

    Vinod V. GADDE  Makoto IKEDA  

     
    PAPER

      Vol:
    E102-A No:12
      Page(s):
    1731-1740

    We have proposed a generic architecture that can integrate the aspects of confidentiality and integrity into the A/D conversion framework. A conceptual account of the development of the proposed architecture is presented. Using the principle of this architecture we have presented a CMOS circuit design to facilitate a fully integrated Authenticated-Encrypted ADC (AE-ADC). We have implemented and demonstrated a partial 8-bit ADC Analog Front End of this proposed circuit in 0.18µm CMOS with an ENOB of 7.64 bits.

  • Real-Time Scheduling of Data Flows with Deadlines for Industrial Wireless Sensor Networks

    Benhong ZHANG  Yiming WANG  Jianjun ZHANG  Juan XU  

     
    PAPER-Network

      Pubricized:
    2019/05/27
      Vol:
    E102-B No:12
      Page(s):
    2218-2225

    The flexibility of wireless communication makes it more and more widely used in industrial scenarios. To satisfy the strict real-time requirements of industry, various wireless methods especially based on the time division multiple access protocol have been introduced. In this work, we first conduct a mathematical analysis of the network model and the problem of minimum packet loss. Then, an optimal Real-time Scheduling algorithm based on Backtracking method (RSBT) for industrial wireless sensor networks is proposed; this yields a scheduling scheme that can achieve the lowest network packet loss rate. We also propose a suboptimal Real-time Scheduling algorithm based on Urgency and Concurrency (RSUC). Simulation results show that the proposed algorithms effectively reduce the rate of the network packet loss and the average response time of data flows. The real-time performance of the RSUC algorithm is close to optimal, which confirms the computation efficiency of the algorithm.

281-300hit(3161hit)