Ruiqin MIAO Jun SUN Lin GUI Jian XIONG
In this paper, the issue of carrier frequency offset (CFO) compensation in interleaved orthogonal frequency division multiple access (OFDMA) uplink system is investigated. To mitigate the effect of multiple access interference (MAI) caused by CFOs of different users, a new parallel interference cancellation (PIC) compensation algorithm is proposed. This scheme uses minimum mean square error (MMSE) criterion to obtain the estimation of interference users, then circular convolutions are employed to restore MAI and compensate CFO. To tackle the complexity problem of circular convolutions, an efficient MAI restoration and cancellation method is developed. Simulations illustrate the good performance and low computational complexity of the proposed algorithm.
Toshihiro HORI Tomotaka WADA Norie UCHITOMI Kouichi MUTSUURA Hiromi OKADA
The RFID tag system has received attention as an identification source. Each RFID tag is attached to some object. With the unique ID of the RFID tag, a user identifies the object provided with the RFID tag, and derives appropriate information about the object. One of important applications of the RFID technology is the position estimation of RFID tags. It can be very useful to acquire the location information concerning the RFID tags. It can be applied to navigation systems and positional detection systems for robots etc. In this paper, we propose a new position estimation method of RFID tags by using a probabilistic approach. In this method, mobile objects (person and robot, etc.) with RFID readers estimate the positions of RFID tags with multiple communication ranges. We show the effectiveness of the proposed method by computer simulations.
In this paper, we study low complexity transceiver for double space time transmit diversity (DSTTD) and orthogonal frequency division multiplexing (OFDM) system with antenna shuffling. Firstly, we propose a novel antenna shuffling method based on the criterion of minimizing the condition number of channel correlation matrix. The condition number is an indicator about the quality of the channel. By selecting the minimum of condition number which has better channel quality, consequently, a linear detector with respect to this new channel may achieve better performance results. A low complexity variant of the condition number calculation is also proposed, and it is shown that this criterion can be reduced to the minimum mean square error (MMSE) based criterion. Furthermore, the weighted soft decision Viterbi decoding is applied to mitigate noise enhancement inherent to zero forcing (ZF) and MMSE linear receivers and improve error rate performance. Next, we propose an algorithm to reduce the amount of feedback by exploiting the fact that the channel frequency responses across OFDM subcarriers are correlated. In the proposed algorithm, subcarriers are clustered in blocks, which are allocated the same shuffling pattern with the largest number of the shuffling patterns in the cluster. This way, the signaling overhead can be reduced in comparison with each subcarrier based feedback. Extensive simulations show that the proposed techniques for DSTTD-OFDM system outperform other existing techniques under both uncorrelated and highly spatial correlated frequency selective MIMO fading channels.
Hideaki KONDO Masaru SAWADA Norio MURAKAMI Shoichi MASUI
This paper describes the architecture and implementations of an automatic digital tuning circuit for a complex bandpass filter (BPF) in a low-power and low-cost transceiver for applications such as personal authentication and wireless sensor network systems. The architectural design analysis demonstrates that an active RC filter in a low-IF architecture can be at least 47.7% smaller in area than a conventional gm-C filter; in addition, it features a simple implementation of an associated tuning circuit. The principle of simultaneous tuning of both the center frequency and bandwidth through calibration of a capacitor array is illustrated as based on an analysis of filter characteristics, and a scalable automatic digital tuning circuit with simple analog blocks and control logic having only 835 gates is introduced. The developed capacitor tuning technique can achieve a tuning error of less than 3.5% and lower a peaking in the passband filter characteristics. An experimental complex BPF using 0.18 µm CMOS technology can successfully reduce the tuning error from an initial value of -20% to less than 2.5% after tuning. The filter block dimensions are 1.22 mm1.01 mm; and in measurement results of the developed complex BPF with the automatic digital tuning circuit, current consumption is 705 µA and the image rejection ratio is 40.3 dB. Complete evaluation of the BPF indicates that this technique can be applied to low-power, low-cost transceivers.
This letter proposes a windowing frequency domain adaptive algorithm, which reuses the filtering error to apply window function in the filter updating symmetrically. By using a proper window function to reduce the negative influence of the spectral leakage, the proposed algorithm can significantly improve the performance of the acoustic echo cancellation for speech signals.
In this paper, we propose a novel frequency-hopping scheme in order to improve the BER (Bit Error Rate) performance of the Partial Block MC-CDMA (PB/MC-CDMA) system. The joint carrier distribution and frequency hopping (JDFH) scheme achieves the optimal frequency diversity gain while avoiding interference. By contrast, the conventional FH scheme only avoids interference, and the frequency interleaving scheme achieves only frequency diversity. The JDFH scheme thus performs better than conventional schemes, such as carrier FH, block FH, or frequency interleaving. Through computer simulations, we confirmed the superior performance of the PB/MC-CDMA system when using the JDFH scheme.
Fumiyuki ADACHI Hiromichi TOMEBA Kazuki TAKEDA
Recently, frequency-domain equalization (FDE) has been attracting much attention as a way to improve single-carrier (SC) signal transmission in a frequency-selective wireless channel. Since the SC signal spectrum is spread over the entire signal bandwidth, FDE can take advantage of channel frequency-selectivity and achieve the frequency diversity gain. SC with FDE is a promising wireless signal transmission technique. In this article, we review the pioneering research done on SC with FDE. The principles of simple one-tap FDE, channel estimation, and residual inter-symbol interference (ISI) cancellation are presented. Multi-input/multi-output (MIMO) is an important technique to improve the transmission performance. Some of the studies on MIMO/SC with FDE are introduced.
Tomoyuki SHIMA Hiromichi TOMEBA Fumiyuki ADACHI
Orthogonal multi-carrier direct sequence code division multiple access (orthogonal MC DS-CDMA) is a combination of time-domain spreading and orthogonal frequency division multiplexing (OFDM). In orthogonal MC DS-CDMA, the frequency diversity gain can be obtained by applying frequency-domain equalization (FDE) based on minimum mean square error (MMSE) criterion to a block of OFDM symbols and can improve the bit error rate (BER) performance in a severe frequency-selective fading channel. FDE requires an accurate estimate of the channel gain. The channel gain can be estimated by removing the pilot modulation in the frequency domain. In this paper, we propose a pilot-assisted channel estimation suitable for orthogonal MC DS-CDMA with FDE and evaluate, by computer simulation, the BER performance in a frequency-selective Rayleigh fading channel.
Basic features of fretting and factors affecting its deleterious effects on the performance of electrical/electronic connection were reviewed. It was shown that although the fretting cannot be eliminated completely, its deleterious effects can be substantially reduced by lubrication and also connection design.
Xiaoxu CHEN Tao LIU Yaohuan GONG
This letter presents recursive frequency offset estimation for MIMO (Multiple Input Multiple Output) system in flat-fading channels. With the recursive estimation, the frequency offset range in MIMO system can be extended compared with normal estimation. Simulation results show that the recursive frequency offset estimation is valid for large frequency offset.
Umut YUNUS Hai LIN Katsumi YAMASHITA
In OFDM systems, the estimation/correction of carrier frequency offset (CFO) is crucial to maintain orthogonality among subcarriers. However, the CFO estimation suffers from DC offset (DCO) generated in low-cost direct-conversion receivers (DCRs). More seriously, in practice, DCO is time-varying due to the automatic gain control. In this paper, a novel CFO estimator in the presence of time-varying DCO is proposed. It is shown the residual DCO after high-pass filtering varies in a linear fashion. Based on this observation and the periodicity of the training sequence, we derive a CFO estimator independent of DCO. Also, the residual DCO can be estimated, using the obtained CFO. The validity of the proposed estimation method is demonstrated by simulations.
In this letter, we present the impact of carrier frequency offset (CFO) in dual-hop orthogonal frequency division multiplexing (OFDM) systems with a fixed relay for frequency-selective fading channels. Approximate expressions of the average signal-to-noise ratios (SNRs) for both downlink and uplink are obtained and validated by simulations. It is shown that dual-hop systems have slightly worse average SNR degradation than single-hop systems. We also show that the average SNR degradation due to the CFO varies according to the gap between average received SNRs for the first and the second hop.
Masaki TAKANASHI Toshihiko NISHIMURA Yasutaka OGAWA Takeo OHGANE
Ultrawide-band impulse radio (UWB-IR) technology and multiple-input multiple-output (MIMO) systems have attracted interest regarding their use in next-generation high-speed radio communication. We have studied the use of MIMO ultrawide-band (MIMO-UWB) systems to enable higher-speed radio communication. We used frequency-domain equalization based on the minimum mean square error criterion (MMSE-FDE) to reduce intersymbol interference (ISI) and co-channel interference (CCI) in MIMO-UWB systems. Because UWB systems are expected to be used for short-range wireless communication, MIMO-UWB systems will usually operate in line-of-sight (LOS) environments and direct waves will be received at the receiver side. Direct waves have high power and cause high correlations between antennas in such environments. Thus, it is thought that direct waves will adversely affect the performance of spatial filtering and equalization techniques used to enhance signal detection. To examine the feasibility of MIMO-UWB systems, we conducted MIMO-UWB system propagation measurements in LOS environments. From the measurements, we found that the arrival time of direct waves from different transmitting antennas depends on the MIMO configuration. Because we can obtain high power from the direct waves, direct wave reception is critical for maximizing transmission performance. In this paper, we present our measurement results, and propose a way to improve performance using a method of transmit (Tx) and receive (Rx) timing control. We evaluate the bit error rate (BER) performance for this form of timing control using measured channel data.
In this letter, we propose a novel frequency-domain equalizer (FDE) for single-carrier systems characterized by severe inter-symbol interference (ISI) channels; it consists of a linear FDE and an iterative block noise-predictor (IBNP). Unlike the FDE with time-domain noise predictor (FDE-NP), the proposed scheme allows the feedback equalizer being an uncausal filter, and performs the noise prediction in an iterative manner. For this reason, FDE-IBNP can remove both precursor and postcursor ISI, and alleviate the impact of error-propagation. Besides, our scheme has lower computational complexity than the present iterative block equalizers.
Let G(s)=C(sI - A)-1B+D be a given system where entries of A,B,C,D are polynomials in a parameter k. Then H∞ norm || G(s) ||∞ of G(s) is a function of k, and [9] presents an algorithm to express 1/(||G(s) ||∞)2 as a root of a bivariate polynomial, assuming feedthrough term D to be zero. This paper extends the algorithm in two ways: The first extension is the form of the function to be expressed. The extended algorithm can treat, not only H∞ norm, but also functions that appear in the celebrated KYP Lemma. The other extension is the range of the frequency. While H∞ norm considers the supremum of the maximum singular value of G(i ω) for the infinite range 0 ≤ω ≤ ∞ of ω, the extended algorithm treats the norm for the finite frequency range ω ≤ ω ≤ ω- (ω, ω- ∈ R ∪ ∞). Those two extensions allow the algorithm to be applied to wider area of control problems. We give illustrative numerical examples where we apply the extended algorithm to the computation of the frequency-restricted norm, i.e., the supremum of the maximum singular value of G(i ω) (ω- ≤ ω ≤ ω-).
Seung Su HAN Jongho PARK Tae-Jin LEE Hyun Gi AHN Kyunghun JANG
Some wireless OFDMA communication systems support the frequency reuse factor of 1. In order to reduce co-channel interference (CCI) caused by neighbor cells, the fractional frequency reuse (FFR) can be employed. A promising frequency partitioning policy and subcarrier allocation for FFR are essential. In this letter, we employ an efficient frequency partitioning mechanism with less interference and propose an efficient subcarrier allocation algorithm to maximize the sum of users capacity under FFR. We show that the proposed algorithm has higher spectral efficiency than the conventional method as well as significantly high system fairness.
Maduranga LIYANAGE Iwao SASASE
Kalman filters are effective channel estimators but they have the drawback of having heavy calculations when filtering needs to be done in each sample for a large number of subcarriers. In our paper we obtain the steady-state Kalman gain to estimate the channel state by utilizing the characteristics of pilot subcarriers in OFDM, and thus a larger portion of the calculation burden can be eliminated. Steady-state value is calculated by transforming the vector Kalman filtering in to scalar domain by exploiting the filter charactertics when pilot subcarriers are used for channel estimation. Kalman filters operate optimally in the steady-state condition. Therefore by avoiding the convergence period of the Kalman gain, the proposed scheme is able to perform better than the conventional method. Also, driving noise variance of the channel is difficult to obtain practical situations and accurate knowledge is important for the proper operation of the Kalman filter. Therefore, we extend our scheme to operate in the absence of the knowledge of driving noise variance by utilizing received Signal-to-Noise Ratio (SNR). Simulation results show considerable estimator performance gain can be obtained compared to the conventional Kalman filter.
Xinzheng WANG Ming CHEN Pengcheng ZHU
Threshold-based ordered successive interference cancellation (OSIC) detection algorithm is proposed for per-antenna-coded (PAC) two-input multiple-output (TIMO) orthogonal frequency division multiplexing (OFDM) systems. Successive interference cancellation (SIC) is performed selectively according to channel conditions. Compared with the conventional OSIC algorithm, the proposed algorithm reduces the complexity significantly with only a slight performance degradation.
Takaaki KAKITSUKA Shinji MATSUO
We present a novel high-speed transmitter consisting of a frequency modulated DBR laser and optical filters. The refractive index modulation in the phase control region of the DBR laser allows high-speed frequency modulation. The generated frequency modulated signal is converted to an intensity modulated signal using the edge of the optical filter pass band. We present theoretical simulations of high-speed modulation characteristics and extension of transmission reach. With the proposed transmitter, we review the experimental demonstration of 180-km transmission of a 10-Gb/s signal with a tuning range of 27 nm and 60-km transmission of a 20-Gb/s signal.
Zhenzhen GAO Shihua ZHU Jing XU Zhimeng ZHONG
In this letter, a relay-assisted transmission scenario over frequency-selective fading channels perturbed by different random carrier frequency offsets is considered. OFDM and block-double differential (BDD) design are implemented to overcome the problem of intersymbol interference (ISI) and carrier frequency offsets (CFOs). We analyze the symbol error rate (SER) performance of decode-and-forward relaying with BDD design in wireless cooperative communications over frequency-selective fading channels and derive a theoretical upper bound for average SER when the relay (R) is error free. It can be seen from our analysis that the system performance is influenced by the ability of R to decode, and when R decodes without error, both spatial and multipath diversity can be obtained without requiring any knowledge of channel state information and CFO information at the receivers. Numerical examples are provided to corroborate our theoretical analysis.