The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] frequency(1415hit)

341-360hit(1415hit)

  • A Novel UWB SRR for Target Velocity Measurement in Gaussian Noise Environment for Automobile Applications

    Purushothaman SURENDRAN  Jong-Hun LEE  Seok-Jun KO  

     
    PAPER-Sensing

      Vol:
    E97-B No:1
      Page(s):
    210-217

    In this paper, we propose a time and memory efficient Ultra Wide Band Short Range Radar (UWB SRR) system for measuring relative target velocities of up to 150km/hr. First, for the proposed detector, we select the required design parameters for good performance. The parameters are the number of coherent integrations, non-coherent integrations, and FFT points. The conventional detector uses a Fast Fourier Transform (FFT) to extract the range and velocity of the target simultaneously. Therefore, it requires high computation effort, high FFT processing time, and a huge amount of memory. However, the proposed pulse radar detector first decides the target range and then computes the target velocity using FFT sequentially for the decided range index. According to our theoretical and simulation analyses, the FFT processing time and the memory requirement are reduced compared to those of the conventional method. Finally, we show that the detection performance of the proposed detector is superior to that of the conventional detector in a background of Additive White Gaussian Noise (AWGN).

  • Joint Transmit/Receive MMSE-FDE for Analog Network Coded Single-Carrier Bi-directional Multi-Antenna Relay

    Hiroyuki MIYAZAKI  Tatsunori OBARA  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:12
      Page(s):
    3153-3162

    In this paper, joint transmit/receive frequency-domain equalization (FDE) is proposed for analog network coded (ANC) single-carrier (SC) bi-directional multi-antenna relay. In the proposed scheme, diversity transmission using transmit FDE is performed at relay station (RS) equipped with multiple antennas while receive FDE is carried out at base station (BS) and mobile terminal (MT) both equipped with single antenna. The transmit and receive FDE weights are jointly optimized so as to minimize the end-to-end mean square error (MSE). We evaluate, by computer simulation, the throughput performance and show that the joint transmit/receive FDE obtains the spatial and frequency diversity gains and accordingly achieve better throughput performance compared to either the transmit FDE only or the receive FDE only. It is also shown that ANC SC bi-directional multi-antenna relay can extend the communication coverage area for the given required throughput compared to conventional direct transmission.

  • Study of Multi-Cell Interference in a 2-Hop OFDMA Virtual Cellular Network

    Gerard J. PARAISON  Eisuke KUDOH  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:12
      Page(s):
    3163-3171

    In the literature, many resource allocation schemes have been proposed for multi-hop networks. However, the analyses provided focus mainly on the single cell case. Inter-cell interference severely degrades the performance of a wireless mobile network. Therefore, incorporating the analysis of inter-cell interference into the study of a scheme is required to more fully understand the performance of that scheme. The authors of this paper have proposed a parallel relaying scheme for a 2-hop OFDMA virtual cellular network (VCN). The purpose of this paper is to study a new version of that scheme which considers a multi-cell environment and evaluate the performance of the VCN. The ergodic channel capacity and outage capacity of the VCN in the presence of inter-cell interference are evaluated, and the results are compared to those of the single hop network (SHN). Furthermore, the effect of the location and number of wireless ports in the VCN on the channel capacity of the VCN is investigated, and the degree of fairness of the VCN relative to that of the SHN is compared. Using computer simulations, it is found that in the presence of inter-cell interference, a) the VCN outperforms the SHN even in the interference dominant transmission power region (when a single cell is considered, the VCN is better than the SHN only in the noise dominant transmission power region), b) the channel capacity of the VCN remains greater than that of the SHN even if the VCN is fully loaded, c) an optimal distance ratio for the location of the wireless ports can be found in the interval 0.2∼0.4, d) increasing the number of wireless ports from 3 to 6 can increase the channel capacity of the VCN, and e) the VCN can achieve better outage capacity than the SHN.

  • Dynamic Spectrum Control Aided Spectrum Sharing with Nonuniform Sampling-Based Channel Sounding

    Quang Thang DUONG  Shinsuke IBI  Seiichi SAMPEI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:12
      Page(s):
    3172-3180

    This paper studies channel sounding for selfish dynamic spectrum control (S-DSC) in which each link dynamically maps its spectral components onto a necessary amount of discrete frequencies having the highest channel gain of the common system band. In S-DSC, it is compulsory to conduct channel sounding for the entire system band by using a reference signal whose spectral components are sparsely allocated by S-DSC. Using nonuniform sampling theory, this paper exploits the finite impulse response characteristic of frequency selective fading channels to carry out the channel sounding. However, when the number of spectral components is relatively small compared to the number of discrete frequencies of the system band, reliability of the channel sounding deteriorates severely due to the ill-conditioned problem and degradation in channel capacity of the next frame occurs as a result. Aiming at balancing frequency selection diversity effect and reliability of channel sounding, this paper proposes an S-DSC which allocates an appropriate number of spectral components onto discrete frequencies with low predicted channel gain besides mapping the rest onto those with high predicted channel gain. A numerical analysis confirms that the proposed S-DSC gives significant enhancement in channel capacity performance.

  • Pre-Equalization Based Initial Ranging Scheme for TDD-OFDMA Systems in Frequency Selective Channel

    Qiwei WANG  Guangliang REN  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E96-B No:12
      Page(s):
    3050-3061

    To mitigate the impact of the frequency selectivity of the wireless channel on the initial ranging (IR) process in 802.16 based WiMax systems, several well known pre-equalization techniques applied in the IR are first analyzed in detail, and the optimal pre-equalization scheme is further improved for the IR by overcoming its weaknesses. A numerical simulation shows that the proposed pre-equalization scheme significantly improves the performance of multiuser detection and parameter estimation in the IR process.

  • Simple Linearity Analysis of Passive Mixer Based on DC Characteristics of MOS FET

    Yohei MORISHITA  Kiyomichi ARAKI  

     
    PAPER

      Vol:
    E96-C No:10
      Page(s):
    1236-1244

    The linearity analysis of a passive mixer is presented. The distortion mechanism caused by switching operation of a MOS transistor is elucidated from the static and dynamic analysis of passive mixers. Furthermore, the maximum input and output level to keep linear operation and its required bias conditions are expressed by simple equations. The maximum linear output amplitude of the passive mixer is determined only by the local signal amplitude and it does not depend on input and output impedance. The calculated linearity performances agree well with simulated and measured results.

  • Blind Carrier Frequency Offset Estimation Based on Polynomial Rooting for Interleaved Uplink OFDMA

    Ann-Chen CHANG  Chih-Chang SHEN  

     
    LETTER-Communication Theory and Signals

      Vol:
    E96-A No:10
      Page(s):
    2057-2060

    This letter deals with blind carrier frequency offset estimation by exploiting the minimum variance distortionless response (MVDR) criterion for interleaved uplink orthogonal frequency division multiple access (OFDMA). It has been shown that the complexity and estimation accuracy of MVDR strictly depend on the grid size used during the search. For the purpose of efficient estimation, we present an improved polynomial rooting estimator that is robust in low signal-to-noise ratio scenario. Simulation results are provided for illustrating the effectiveness of the proposed estimator.

  • Development of RFID Antenna for Detection of Urination

    Hiromasa NAKAJIMA  Masaharu TAKAHASHI  Kazuyuki SAITO  Koichi ITO  

     
    PAPER-Antennas and Propagation

      Vol:
    E96-B No:9
      Page(s):
    2244-2250

    This paper introduces a radio frequency identification (RFID) tag for urination detection. The proposed tag is embedded into paper diapers in order to detect the patient's urination immediately. For this tag, we designed an RFID tag antenna at 950MHz, which matches the impedance of the associated integrated circuit (IC) chip. In addition, we calculate the antenna characteristics and measure the reflection coefficient (S11) and radiation pattern of the antenna. The results show that this system can be used to detect urination.

  • Study of a Multiuser Resource Allocation Scheme for a 2-Hop OFDMA Virtual Cellular Network

    Gerard J. PARAISON  Eisuke KUDOH  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:8
      Page(s):
    2112-2118

    In the next generation mobile network, the demand for high data rate transmission will require an increase in the transmission power if the current mobile cellular network architecture is used. Multihop networks are considered to be a key solution to this problem. However, a new resource allocation algorithm is also required for the new network architecture. In this paper, we propose a resource allocation scheme for a parallel relay 2-hop OFDMA virtual cellular network (VCN) which can be applied in a multiuser environment. We evaluate, by computer simulation, the ergodic channel capacity of the VCN using the proposed algorithm, and compare the results with those of the conventional single hop network (SHN). In addition, we analyze the effect of the location of the relay wireless ports on the ergodic channel capacity of the VCN. We also study the degree of fairness of the VCN, using the proposed scheme, compared with that of the SHN. For low transmission power, the simulation results show: a) the VCN can provide a better ergodic channel capacity and a better degree of fairness than the SHN, b) the distance ratio for which the ergodic channel capacity of the VCN is maximal can be found in the interval 0.20.3, c) the ergodic channel capacity of the VCN remains better than that of the SHN as the number of users increases, and d) as the distance between the relay WPs and the base station increases, the channel capacity of VCN approaches that of the SHN.

  • Leakage Power Reduction of Adiabatic Circuits Based on FinFET Devices

    Kai LIAO  XiaoXin CUI  Nan LIAO  KaiSheng MA  

     
    PAPER-Integrated Electronics

      Vol:
    E96-C No:8
      Page(s):
    1068-1075

    With the technology scaling down, leakage power becomes an important part of total power consumption. The relatively large leakage current weakens the energy recovery capability of adiabatic circuits and reduces its superiority, compared with static CMOS circuits in the field of low-power design. In this paper, we rebuild three types of adiabatic circuits (2N2N2P, IPAL and DCPAL) based on FinFET devices to obtain a large leakage power reduction by rationally utilizing the different operating modes of FinFET devices (SG, LP, and IG). A 16-bit adiabatic adder has been investigated to demonstrate the advantages of FinFET adiabatic circuits. The Predictive Technology Model (PTM) is used for 32-nm bulk MOSFET and FinFET devices and all of the simulations are based on HSPICE. The results evince the proposed FinFET adiabatic circuits have a considerable reduction (more than 60% for SG mode FinFET and more than 80% for LP mode FinFET) of power consumption compared with the bulk MOSFET ones. Furthermore, the FinFET adiabatic circuits also have higher limiting frequency of clock source and better noise immunity.

  • A New Fine Doppler Frequency Estimator Based on Two-Sample FFT for Pulse Doppler Radar

    Sang-Dong KIM  Jong-Hun LEE  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E96-B No:6
      Page(s):
    1643-1646

    We propose a new fine Doppler frequency estimator using two fast Fourier transform (FFT) samples for pulse Doppler radar that offers highly sensitive detection and a high resolution of velocity. The procedure of fine Doppler frequency estimation is completed through coarse frequency estimation (CFE) and fine frequency estimation (FFE) steps. During the CFE step, the integer part of the Doppler frequency is obtained by processing the FFT, after which, during the FFE step, the fractional part is estimated using the relationship between the FFT peak and its nearest resultant value. Our simulation results show that the proposed estimator has better accuracy than Candan's estimator in terms of bias. The root mean square error (RMSE) of the proposed estimator has more than 1.4 time better accuracy than Candan's estimator under a 1,024-point FFT and a signal-to-noise ratio (SNR) of 10 dB. In addition, when the FFT size is increased from 512 to 2,048, the RMSE characteristics of the proposed estimator improve by more than two-fold.

  • Lower Bounds on the Aperiodic Hamming Correlations of Frequency Hopping Sequences

    Xing LIU  Daiyuan PENG  Xianhua NIU  Fang LIU  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E96-A No:6
      Page(s):
    1445-1450

    In order to evaluate the goodness of frequency hopping (FH) sequence design, the periodic Hamming correlation function is used as an important measure. But aperiodic Hamming correlation of FH sequences matters in real applications, while it received little attraction in the literature compared with periodic Hamming correlation. In this paper, the new aperiodic Hamming correlation lower bounds for FH sequences, with respect to the size of the frequency slot set, the sequence length, the family size, the maximum aperiodic Hamming autocorrelation and the maximum aperiodic Hamming crosscorrelation are established. The new aperiodic bounds are tighter than the Peng-Fan bounds. In addition, the new bounds include the second powers of the maximum aperiodic Hamming autocorrelation and the maximum aperiodic Hamming crosscorrelation but the Peng-Fan bounds do not include them. For the given sequence length, the family size and the frequency slot set size, the values of the maximum aperiodic Hamming autocorrelation and the maximum aperiodic Hamming crosscorrelation are inside of an ellipse which is given by the new aperiodic bounds.

  • A Drift-Constrained Frequency-Domain Ultra-Low-Delay H.264/SVC to H.264/AVC Transcoder with Medium-Grain Quality Scalability for Videoconferencing

    Lei SUN  Zhenyu LIU  Takeshi IKENAGA  

     
    PAPER

      Vol:
    E96-A No:6
      Page(s):
    1253-1263

    Scalable Video Coding (SVC) is an extension of H.264/AVC, aiming to provide the ability to adapt to heterogeneous networks or requirements. It offers great flexibility for bitstream adaptation in multi-point applications such as videoconferencing. However, transcoding between SVC and AVC is necessary due to the existence of legacy AVC-based systems. The straightforward re-encoding method requires great computational cost, and delay-sensitive applications like videoconferencing require much faster transcoding scheme. This paper proposes an ultra-low-delay SVC-to-AVC MGS (Medium-Grain quality Scalability) transcoder for videoconferencing applications. Transcoding is performed in pure frequency domain with partial decoding/encoding in order to achieve significant speed-up. Three fast transcoding methods in frequency domain are proposed for macroblocks with different coding modes in non-KEY pictures. KEY pictures are transcoded by reusing the base layer motion data, and error propagation is constrained between KEY pictures. Simulation results show that proposed transcoder achieves averagely 38.5 times speed-up compared with the re-encoding method, while introducing merely 0.71 dB BDPSNR coding quality loss for videoconferencing sequences as compared with the re-encoding algorithm.

  • Facial Image Super-Resolution Reconstruction Based on Separated Frequency Components

    Hyunduk KIM  Sang-Heon LEE  Myoung-Kyu SOHN  Dong-Ju KIM  Byungmin KIM  

     
    PAPER

      Vol:
    E96-A No:6
      Page(s):
    1315-1322

    Super resolution (SR) reconstruction is the process of fusing a sequence of low-resolution images into one high-resolution image. Many researchers have introduced various SR reconstruction methods. However, these traditional methods are limited in the extent to which they allow recovery of high-frequency information. Moreover, due to the self-similarity of face images, most of the facial SR algorithms are machine learning based. In this paper, we introduce a facial SR algorithm that combines learning-based and regularized SR image reconstruction algorithms. Our conception involves two main ideas. First, we employ separated frequency components to reconstruct high-resolution images. In addition, we separate the region of the training face image. These approaches can help to recover high-frequency information. In our experiments, we demonstrate the effectiveness of these ideas.

  • A Reduced-Complexity Heterodyne Multiband MIMO Receiver with Estimation of Analog Devices Imperfection in a Baseband Feedback Loop

    Tomoya OHTA  Satoshi DENNO  Masahiro MORIKURA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:6
      Page(s):
    1540-1550

    This paper proposes a reduced-complexity multiband multiple-input multiple-output (MIMO) receiver that can be used in cognitive radios. The proposed receiver uses heterodyne reception implemented with a wide-passband band-pass filter in the radio frequency (RF) stage. When an RF Hilbert transformer is utilized in the receiver, image-band interference occurs because of the transformer's imperfections. Thus, the imperfection of the Hilbert transformer is corrected in the intermediate frequency (IF) stage to reduce the hardware complexity. First, the proposed receiver estimates the channel impulse response in the presence of the strong image-band interference signals. Next, the coefficients are calculated for the correction of the imperfection at the IF stage, and are fed back to the IF stage through a feedback loop. However, the imperfection caused by the digital-to-analog (D/A) converter and the baseband amplifier in the feedback loop corrupts the coefficients on the way back to the IF stage. Therefore, the proposed receiver corrects the imperfection of the analog devices in the feedback loop. The performance of the proposed receiver is verified by using computer simulations. The proposed receiver can maintain its performance even in the presence of strong image-band interference signals and imperfection of the analog devices in the feedback loop. In addition, this paper also reveals the condition for rapid convergence.

  • Noise Suppression Methods Using Spiral with PGS in PCB

    Tong-Ho CHUNG  Jong-Gwan YOOK  

     
    BRIEF PAPER-Electronic Circuits

      Vol:
    E96-C No:5
      Page(s):
    752-754

    In this paper, several spiral inductors with various ground clearance structures and turns were investigated to achieve noise suppression up to the fourth harmonic (3.2 GHz) regime of DDR3-1600. Their performances were characterized in terms of their capability to effectively suppress simultaneous switching noise (SSN) in the frequency region of interest. For a wider noise suppression bandwidth, a spiral inductor with large ground clearance, which provides a high self resonance frequency (SRF) as well as high inductances, was implemented. The proposed spiral inductor exhibited good noise suppression characteristics in the frequency domain and achieved 50% voltage fluctuation reduction in the time domain, compared to the identical 4-turn spiral without pattern ground structure.

  • Joint Channel Shortening and Carrier Frequency Offset Estimation Based on Carrier Nulling Criterion in Downlink OFDMA Systems

    Teruyuki MIYAJIMA  Ryo KUWANA  

     
    LETTER-Communication Theory and Signals

      Vol:
    E96-A No:5
      Page(s):
    1014-1016

    In this letter, we present a joint blind adaptive scheme to suppress inter-block interference and estimate a carrier frequency offset (CFO) in downlink OFDMA systems. The proposed scheme is a combination of a channel shortening method and a CFO estimator, both based on the carrier nulling criterion. Simulation results demonstrate the effectiveness of the proposed scheme.

  • On The Average Partial Hamming Correlation of Frequency-Hopping Sequences

    Wenli REN  Fang-Wei FU  Zhengchun ZHOU  

     
    LETTER-Communication Theory and Signals

      Vol:
    E96-A No:5
      Page(s):
    1010-1013

    The average Hamming correlation is an important performance indicator of frequency-hopping sequences (FHSs). In this letter, the average partial Hamming correlation (APHC) properties of FHSs are discussed. Firstly, the theoretical bound on the average partial Hamming correlation of FHSs is established. It works for any correlation window with length 1≤ω≤υ, where υ is the sequence period, and generalizes the bound developed by Peng et al which is valid only when ω=υ. A sufficient and necessary condition for a set of FHSs having optimal APHC for any correlation window is then given. Finally, sets of FHSs with optimal APHC are presented.

  • Cell Search Synchronization under the Presence of Timing and Frequency Offsets in W-CDMA

    Wisam K. HUSSAIN  Loay D. KHALAF  Mohammed HAWA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:4
      Page(s):
    1012-1018

    Initial cell search in wideband code-division multiple-access (W-CDMA) systems is a challenging process. On the one hand, channel impairments such as multipath fading, Doppler shift, and noise create frequency and time offsets in the received signal. On the other hand, the residual synchronization error of the crystal oscillator at the mobile station also causes time and frequency offsets. Such offsets can affect the ability of a mobile station to perform cell search. Previous work concentrated on cell synchronization algorithms that considered multipath channels and frequency offsets, but ignored clock and timing offsets due to device tolerances. This work discusses a robust initial cell search algorithm, and quantifies its performance in the presence of frequency and time offsets due to two co-existing problems: channel impairments and clock drift at the receiver. Another desired performance enhancement is the reduction of power consumption of the receiver, which is mainly due to the computational complexity of the algorithms. This power reduction can be achieved by reducing the computational complexity by a divide and conquer strategy during the synchronization process.

  • Unified Time-Frequency OFDM Transmission with Self Interference Cancellation

    Changyong PAN  Linglong DAI  Zhixing YANG  

     
    PAPER-Communication Theory and Signals

      Vol:
    E96-A No:4
      Page(s):
    807-813

    Time domain synchronous orthogonal frequency division multiplexing (TDS-OFDM) has higher spectral efficiency than the standard cyclic prefix OFDM (CP-OFDM) OFDM by replacing the random CP with the known training sequence (TS), which could be also used for synchronization and channel estimation. However, TDS-OFDM requires suffers from performance loss over fading channels due to the iterative interference cancellation has to be used to remove the mutual interferences between the TS and the useful data. To solve this problem, the novel TS based OFDM transmission scheme, referred to as the unified time-frequency OFDM (UTF-OFDM), is proposed in which the time-domain TS and the frequency-domain pilots are carefully designed to naturally avoid the interference from the TS to the data without any reconstruction. The proposed UTF-OFDM based flexible frame structure supports effective channel estimation and reliable channel equalization, while imposing a significantly lower complexity than the TDS-OFDM system at the cost of a slightly reduced spectral efficiency. Simulation results demonstrate that the proposed UTF-OFDM substantially outperforms the existing TDS-OFDM, in terms of the system's achievable bit error rate.

341-360hit(1415hit)