The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] frequency(1407hit)

561-580hit(1407hit)

  • A Design of CMOS Class-E Power Amplifier with Phase Correction for Envelope Elimination and Restoration (EER)/Polar Systems

    Wen-An TSOU  Wen-Shen WUEN  Kuei-Ann WEN  

     
    BRIEF PAPER-Electronic Circuits

      Vol:
    E93-C No:1
      Page(s):
    128-131

    A circuit technique to correct Vdd/PM distortion and improve efficiency as supply modulation of cascode class-E PAs has been proposed. The experimental result shows that the phase distortion can be improved from 20 degrees to 5 degrees. Moreover, a system co-simulation result demonstrated that the EVM can be improved from -17 dB to -19 dB.

  • Face Recognition Based on Nonlinear DCT Discriminant Feature Extraction Using Improved Kernel DCV

    Sheng LI  Yong-fang YAO  Xiao-yuan JING  Heng CHANG  Shi-qiang GAO  David ZHANG  Jing-yu YANG  

     
    LETTER-Pattern Recognition

      Vol:
    E92-D No:12
      Page(s):
    2527-2530

    This letter proposes a nonlinear DCT discriminant feature extraction approach for face recognition. The proposed approach first selects appropriate DCT frequency bands according to their levels of nonlinear discrimination. Then, this approach extracts nonlinear discriminant features from the selected DCT bands by presenting a new kernel discriminant method, i.e. the improved kernel discriminative common vector (KDCV) method. Experiments on the public FERET database show that this new approach is more effective than several related methods.

  • A Novel Composite Right/Left-Handed Rectangular Waveguide with Tilted Corrugations and Its Application to Millimeter-Wave Frequency-Scanning Antenna

    Toru IWASAKI  Hirokazu KAMODA  Takao KUKI  

     
    PAPER-Antennas and Propagation

      Vol:
    E92-B No:12
      Page(s):
    3843-3849

    A novel structure for a composite right/left-handed (CRLH) corrugated waveguide in the millimeter-wave band is proposed. The CRLH waveguide is composed of a rectangular waveguide with tilted corrugations on its bottom broad wall. By operating above and below the cutoff frequency of the dominant mode of the rectangular waveguide, the CRLH waveguide provides, respectively, an inherent series inductance and shunt capacitance, and an inherent shunt inductance. Moreover, the tilted corrugations provide a series inductance and a series capacitance, which can support CRLH propagation. A frequency-scanning antenna using this CRLH waveguide is also studied numerically and experimentally. The results demonstrate that the antenna can provide backward-to-forward beam scanning, including the broadside direction. A scanning angle from -9.9 to +2.2 is achieved within a 1.8-GHz frequency range in the 60-GHz band.

  • Time-Frequency Channel Parameterization with Application to Multi-Mode Receivers

    Thomas HUNZIKER  Ziyang JU  Dirk DAHLHAUS  

     
    PAPER-Multi-Mode Receiver

      Vol:
    E92-B No:12
      Page(s):
    3717-3725

    There is a trend towards flexible radios which are able to cope with a range of wireless communication standards. For the integrated processing of widely different signals -- including single-carrier, multi-carrier, and spread-spectrum signals -- monolithic baseband receivers need universal formats for the signal representation and channel description. We consider a reconfigurable receiver architecture building on concepts from time-frequency (TF) signal analysis. The core elements are TF signal representations in form of a Gabor expansion along with a compatible parameterization of time-variant channels. While applicable to arbitrary signal types, the TF channel parameterization offers similar advantages as the frequency domain channel description employed by orthogonal frequency-division multiplexing receivers. The freedom in the choice of the underlying analysis window function and the scalability in time and frequency facilitate the handling of diverse signal types as well as the adaptation to radio channels with different delay and Doppler spreads. Optimized window shapes limit the inherent model error, as demonstrated using the example of direct-sequence spread-spectrum signaling.

  • Frequency-Domain Equalization for Coherent Optical Single-Carrier Transmission Systems

    Koichi ISHIHARA  Takayuki KOBAYASHI  Riichi KUDO  Yasushi TAKATORI  Akihide SANO  Yutaka MIYAMOTO  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E92-B No:12
      Page(s):
    3736-3743

    In this paper, we use frequency-domain equalization (FDE) to create coherent optical single-carrier (CO-SC) transmission systems that are very tolerant of chromatic dispersion (CD) and polarization mode dispersion (PMD). The efficient transmission of a 25-Gb/s NRZ-QPSK signal by using the proposed FDE is demonstrated under severe CD and PMD conditions. We also discuss the principle of FDE and some techniques suitable for implementing CO-SC-FDE. The results show that a CO-SC-FDE system is very tolerant of CD and PMD and can achieve high transmission rates over single mode fiber without optical dispersion compensation.

  • A Wide Band VCO with Automatic Frequency, Gain, and Two-Step Amplitude Calibration Loop for DTV Tuner Application

    YoungGun PU  Kang-Yoon LEE  

     
    PAPER-Electronic Circuits

      Vol:
    E92-C No:12
      Page(s):
    1496-1503

    This paper presents a wide tuning range VCO with an automatic frequency, gain, and two-step amplitude calibration loop for Digital TV (DTV) tuner applications. To cover the wide tuning range, the fully digital automatic frequency calibration (AFC) loop is used. In addition to the AFC loop, a two-step negative-Gm tuning loop is proposed to provide the optimum negative-Gm to the LC tank in a wide frequency range with a fine resolution. In the coarse negative-Gm tuning loop, the number of active negative-Gm cells is selected digitally based on the target frequency. In the fine negative-Gm tuning loop, the negative-Gm is tuned finely with the bias voltage of the VCO. Also, the digital VCO gain calibration scheme is proposed to compensate for the gain variation in a wide tuning range. The VCO tuning range is 2.6 GHz, from 1.7 GHz to 4.3 GHz, and the power consumption is 2 mA to 4 mA from a 1.8 V supply. The measured VCO phase noise is -120 dBc/Hz at 1 MHz offset.

  • Error Probability of MRC in Frequency Selective Nakagami Fading in the Presence of CCI and ACI

    Mohammad Azizur RAHMAN  Chin-Sean SUM  Ryuhei FUNADA  Shigenobu SASAKI  Tuncer BAYKAS  Junyi WANG  Hiroshi HARADA  Shuzo KATO  

     
    PAPER

      Vol:
    E92-A No:11
      Page(s):
    2679-2687

    An exact expression of error rate is developed for maximal ratio combining (MRC) in an independent but not necessarily identically distributed frequency selective Nakagami fading channel taking into account inter-symbol, co-channel and adjacent channel interferences (ISI, CCI and ACI respectively). The characteristic function (CF) method is adopted. While accurate analysis of MRC performance cannot be seen in frequency selective channel taking ISI (and CCI) into account, such analysis for ACI has not been addressed yet. The general analysis presented in this paper solves a problem of past and present interest, which has so far been studied either approximately or in simulations. The exact method presented also lets us obtain an approximate error rate expression based on Gaussian approximation (GA) of the interferences. It is shown, especially while the channel is lightly faded, has fewer multipath components and a decaying delay profile, the GA may be substantially inaccurate at high signal-to-noise ratio. However, the exact results also reveal an important finding that there is a range of parameters where the simpler GA is reasonably accurate and hence, we don't have to go for more involved exact expression.

  • IQ Imbalance Estimation Scheme in the Presence of DC Offset and Frequency Offset in the Frequency Domain

    Mamiko INAMORI  Shuzo TAKAYAMA  Yukitoshi SANADA  

     
    PAPER

      Vol:
    E92-A No:11
      Page(s):
    2688-2696

    Direct conversion receivers in orthogonal frequency division multiplexing (OFDM) systems suffer from direct current (DC) offset, frequency offset, and IQ imbalance. We have proposed an IQ imbalance estimation scheme in the presence of DC offset and frequency offset, which uses preamble signals in the time domain. In this scheme, the DC offset is eliminated by a differential filter. However, the accuracy of IQ imbalance estimation is deteriorated when the frequency offset is small. To overcome this problem, a new IQ imbalance estimation scheme in the frequency domain with the differential filter has been proposed in this paper. The IQ imbalance is estimated with pilot subcarriers. Numerical results obtained through computer simulation show that estimation accuracy and bit error rate (BER) performance can be improved even if the frequency offset is small.

  • Adaptive Pre-FFT Equalizer with High-Precision Channel Estimator for ISI Channels

    Makoto YOSHIDA  

     
    PAPER

      Vol:
    E92-A No:11
      Page(s):
    2669-2678

    We present an attractive approach for OFDM transmission using an adaptive pre-FFT equalizer, which can select ICI reduction mode according to channel condition, and a degenerated-inverse-matrix-based channel estimator (DIME), which uses a cyclic sinc-function matrix uniquely determined by transmitted subcarriers. In addition to simulation results, the proposed system with an adaptive pre-FFT equalizer and DIME has been laboratory tested by using a software defined radio (SDR)-based test bed. The simulation and experimental results demonstrated that the system at a rate of more than 100 Mbps can provide a bit error rate of less than 10-3 for a fast multi-path fading channel that has a moving velocity of more than 200 km/h with a delay spread of 1.9 µs (a maximum delay path of 7.3 µs) in the 5-GHz band.

  • A Novel Interference Cancellation Approach for Interleaved OFDMA Uplink System

    Ruiqin MIAO  Jun SUN  Lin GUI  Jian XIONG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E92-B No:11
      Page(s):
    3432-3438

    In this paper, the issue of carrier frequency offset (CFO) compensation in interleaved orthogonal frequency division multiple access (OFDMA) uplink system is investigated. To mitigate the effect of multiple access interference (MAI) caused by CFOs of different users, a new parallel interference cancellation (PIC) compensation algorithm is proposed. This scheme uses minimum mean square error (MMSE) criterion to obtain the estimation of interference users, then circular convolutions are employed to restore MAI and compensate CFO. To tackle the complexity problem of circular convolutions, an efficient MAI restoration and cancellation method is developed. Simulations illustrate the good performance and low computational complexity of the proposed algorithm.

  • Frequency Asynchronous Cross-Polarization Interference Canceller for Variable Polarization Frequency Division Multiplexing (VPFDM)

    Fumihiro YAMASHITA  Junichi ABE  Kiyoshi KOBAYASHI  Hiroshi KAZAMA  

     
    PAPER

      Vol:
    E92-B No:11
      Page(s):
    3365-3374

    This paper proposes a frequency asynchronous cross-polarization interference canceller for Vertical/Horizontal (V/H) polarization multiplexing satellite communications. In satellite communications, V/H polarization signals are likely to experience different frequency fluctuations, and so the cross-polarization undergoes two different frequency fluctuations. To cancel this cross-polarization interference, a new frequency asynchronous cross-polarization interference canceller that removes interference and frequency offsets is proposed. Computer simulations are carried out to evaluate its fundamental performance. The results show that the proposed canceller can remove the cross-polarization interference created by the two different frequency offsets, simultaneously.

  • A Prototype Modem for Hyper-Multipoint Data Gathering SATCOM Systems --- A Group Modem Applicable to Arbitrarily and Dynamically Assigned FDMA Signals ---

    Kiyoshi KOBAYASHI  Fumihiro YAMASHITA  Jun-ichi ABE  Masazumi UEBA  

     
    PAPER

      Vol:
    E92-B No:11
      Page(s):
    3318-3325

    This paper presents a prototype group modem for a hyper-multipoint data gathering satellite communication system. It can handle arbitrarily and dynamically assigned FDMA signals by employing a novel FFT-type block demultiplexer/multiplexer. We clarify its configuration and operational principle. Experiments show that the developed modem offers excellent performance.

  • A Simple Adaptive Switching Scheme between STBC-OFDM and SFBC-OFDM Systems

    Keonkook LEE  Youngok KIM  Joonhyuk KANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E92-B No:11
      Page(s):
    3546-3549

    In this letter, we propose a simple adaptive switching scheme to enhance the performance of space-time/frequency block coded OFDM systems (STBC/SFBC-OFDM). Since STBC-OFDM and SFBC-OFDM undergo severe performance degradation in time- and frequency-selective fading channels, respectively, performance enhancement can be achieved by switching between STBC-OFDM and SFBC-OFDM over a continuously varying channel environments. Thus, a new switching scheme based on the characteristics of the actual channel is proposed. The effectiveness of the proposed scheme is demonstrated by computer simulations.

  • A Multi-Sensing-Range Method for Efficient Position Estimation by Passive RFID Technology

    Toshihiro HORI  Tomotaka WADA  Norie UCHITOMI  Kouichi MUTSUURA  Hiromi OKADA  

     
    PAPER-Mobile Information Network and Personal Communications

      Vol:
    E92-A No:10
      Page(s):
    2609-2617

    The RFID tag system has received attention as an identification source. Each RFID tag is attached to some object. With the unique ID of the RFID tag, a user identifies the object provided with the RFID tag, and derives appropriate information about the object. One of important applications of the RFID technology is the position estimation of RFID tags. It can be very useful to acquire the location information concerning the RFID tags. It can be applied to navigation systems and positional detection systems for robots etc. In this paper, we propose a new position estimation method of RFID tags by using a probabilistic approach. In this method, mobile objects (person and robot, etc.) with RFID readers estimate the positions of RFID tags with multiple communication ranges. We show the effectiveness of the proposed method by computer simulations.

  • Joint Carrier Distribution and Frequency Hopping Scheme for Improving the BER Performance in PB/MC-CDMA Systems

    Kyujin LEE  Kyesan LEE  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E92-B No:10
      Page(s):
    3270-3273

    In this paper, we propose a novel frequency-hopping scheme in order to improve the BER (Bit Error Rate) performance of the Partial Block MC-CDMA (PB/MC-CDMA) system. The joint carrier distribution and frequency hopping (JDFH) scheme achieves the optimal frequency diversity gain while avoiding interference. By contrast, the conventional FH scheme only avoids interference, and the frequency interleaving scheme achieves only frequency diversity. The JDFH scheme thus performs better than conventional schemes, such as carrier FH, block FH, or frequency interleaving. Through computer simulations, we confirmed the superior performance of the PB/MC-CDMA system when using the JDFH scheme.

  • Design of Complex BPF with Automatic Digital Tuning Circuit for Low-IF Receivers

    Hideaki KONDO  Masaru SAWADA  Norio MURAKAMI  Shoichi MASUI  

     
    PAPER-Integrated Electronics

      Vol:
    E92-C No:10
      Page(s):
    1304-1310

    This paper describes the architecture and implementations of an automatic digital tuning circuit for a complex bandpass filter (BPF) in a low-power and low-cost transceiver for applications such as personal authentication and wireless sensor network systems. The architectural design analysis demonstrates that an active RC filter in a low-IF architecture can be at least 47.7% smaller in area than a conventional gm-C filter; in addition, it features a simple implementation of an associated tuning circuit. The principle of simultaneous tuning of both the center frequency and bandwidth through calibration of a capacitor array is illustrated as based on an analysis of filter characteristics, and a scalable automatic digital tuning circuit with simple analog blocks and control logic having only 835 gates is introduced. The developed capacitor tuning technique can achieve a tuning error of less than 3.5% and lower a peaking in the passband filter characteristics. An experimental complex BPF using 0.18 µm CMOS technology can successfully reduce the tuning error from an initial value of -20% to less than 2.5% after tuning. The filter block dimensions are 1.22 mm1.01 mm; and in measurement results of the developed complex BPF with the automatic digital tuning circuit, current consumption is 705 µA and the image rejection ratio is 40.3 dB. Complete evaluation of the BPF indicates that this technique can be applied to low-power, low-cost transceivers.

  • Double Space Time Transmit Diversity OFDM System with Antenna Shuffling in Spatial Correlated Frequency Selective MIMO Channels

    Liang ZHOU  Masahiko SHIMIZU  

     
    PAPER-Communication Theory and Signals

      Vol:
    E92-A No:10
      Page(s):
    2588-2599

    In this paper, we study low complexity transceiver for double space time transmit diversity (DSTTD) and orthogonal frequency division multiplexing (OFDM) system with antenna shuffling. Firstly, we propose a novel antenna shuffling method based on the criterion of minimizing the condition number of channel correlation matrix. The condition number is an indicator about the quality of the channel. By selecting the minimum of condition number which has better channel quality, consequently, a linear detector with respect to this new channel may achieve better performance results. A low complexity variant of the condition number calculation is also proposed, and it is shown that this criterion can be reduced to the minimum mean square error (MMSE) based criterion. Furthermore, the weighted soft decision Viterbi decoding is applied to mitigate noise enhancement inherent to zero forcing (ZF) and MMSE linear receivers and improve error rate performance. Next, we propose an algorithm to reduce the amount of feedback by exploiting the fact that the channel frequency responses across OFDM subcarriers are correlated. In the proposed algorithm, subcarriers are clustered in blocks, which are allocated the same shuffling pattern with the largest number of the shuffling patterns in the cluster. This way, the signaling overhead can be reduced in comparison with each subcarrier based feedback. Extensive simulations show that the proposed techniques for DSTTD-OFDM system outperform other existing techniques under both uncorrelated and highly spatial correlated frequency selective MIMO fading channels.

  • A Windowing Frequency Domain Adaptive Filter for Acoustic Echo Cancellation

    Sheng WU  Xiaojun QIU  

     
    LETTER-Digital Signal Processing

      Vol:
    E92-A No:10
      Page(s):
    2626-2628

    This letter proposes a windowing frequency domain adaptive algorithm, which reuses the filtering error to apply window function in the filter updating symmetrically. By using a proper window function to reduce the negative influence of the spectral leakage, the proposed algorithm can significantly improve the performance of the acoustic echo cancellation for speech signals.

  • Introduction of Frequency-Domain Signal Processing to Broadband Single-Carrier Transmissions in a Wireless Channel Open Access

    Fumiyuki ADACHI  Hiromichi TOMEBA  Kazuki TAKEDA  

     
    INVITED SURVEY PAPER

      Vol:
    E92-B No:9
      Page(s):
    2789-2808

    Recently, frequency-domain equalization (FDE) has been attracting much attention as a way to improve single-carrier (SC) signal transmission in a frequency-selective wireless channel. Since the SC signal spectrum is spread over the entire signal bandwidth, FDE can take advantage of channel frequency-selectivity and achieve the frequency diversity gain. SC with FDE is a promising wireless signal transmission technique. In this article, we review the pioneering research done on SC with FDE. The principles of simple one-tap FDE, channel estimation, and residual inter-symbol interference (ISI) cancellation are presented. Multi-input/multi-output (MIMO) is an important technique to improve the transmission performance. Some of the studies on MIMO/SC with FDE are introduced.

  • Pilot-Assisted Channel Estimation for Orthogonal Multi-Carrier DS-CDMA with Frequency-Domain Equalization

    Tomoyuki SHIMA  Hiromichi TOMEBA  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E92-B No:9
      Page(s):
    2874-2881

    Orthogonal multi-carrier direct sequence code division multiple access (orthogonal MC DS-CDMA) is a combination of time-domain spreading and orthogonal frequency division multiplexing (OFDM). In orthogonal MC DS-CDMA, the frequency diversity gain can be obtained by applying frequency-domain equalization (FDE) based on minimum mean square error (MMSE) criterion to a block of OFDM symbols and can improve the bit error rate (BER) performance in a severe frequency-selective fading channel. FDE requires an accurate estimate of the channel gain. The channel gain can be estimated by removing the pilot modulation in the frequency domain. In this paper, we propose a pilot-assisted channel estimation suitable for orthogonal MC DS-CDMA with FDE and evaluate, by computer simulation, the BER performance in a frequency-selective Rayleigh fading channel.

561-580hit(1407hit)