In this paper, we present a new frequency identification technique using the recent methodology of compressive sensing and discrete prolate spheroidal sequences with optimal energy concentration. Using the bandpass form of discrete prolate spheroidal sequences as basis matrix in compressive sensing, compressive frequency sensing algorithm is presented. Simulation results are given to present the effectiveness of the proposed technique for application to detection of carrier-frequency type signal and recognition of wideband signal in communication.
This letter introduces a blind minimum interference symbol synchronization for orthogonal frequency-division multiplexing (OFDM) systems based on the cyclic prefix (CP). The basic idea of our contribution is to obtain an estimate of the channel-tap powers from the correlation characteristics of the CP. Based on the estimate of the channel-tap powers, a minimum interference metric is proposed. The proposed algorithm has low complexity and can be used to cope with long inter-symbol-interference (ISI) channels with length up to twice the CP length.
Pinhui KE Zhihua WANG Zheng YANG
In this letter, we give a generalized construction for sets of frequency-hopping sequences (FHSs) based on power-residue sequences. Our construction encompasses a known optimal construction and can generate new optimal sets of FHSs which simultaneously achieve the Peng-Fan bound and the Lempel-Greenberger bound.
Xincun JI Fuqing HUANG Jianhui WU Longxing SHI
A 1.8 V, 5 GHz low power frequency synthesizer for Wireless Sensor Networks is presented in 0.18 µm CMOS technology. A low power phase-switching prescaler is designed, and the current mode phase rotator is merged into the first divide-by-2 circuit of the prescaler to reduce power and propagation delay. An improved charge pump circuit is proposed to compensate for the dynamic effects with the charge pump. By a divide-by-2 circuit, the frequency synthesizer can provide a 2.324-2.714 GHz quadrature output frequency in 1 MHz steps with a 4 MHz reference frequency. The measured output phase noise is -110 dBc/Hz at 1-MHz offset frequency. The power consumption of the PLL is 11.2 mW at 1.8 V supply voltage.
The increasing demand of low power Direct Digital Frequency Synthesizer (DDFS) leads to the requirement of efficient compression methods to reduce ROM size for storing sine function values. This paper presents a technique to achieve very high compression ratio by using the optimized four-segment linear difference method. The proposed technique results in the ROM compression ratio of about 117.3:1 and the word size reduction of 6 bits for the design of a DDFS with 11-bit sine amplitude output. This high compression ratio result is very promising to meet the requirement of low power consumption and low hardware complexity in digital VLSI technology.
Gye-Tae GIL Seong-Choon LEE Dong-Hoi KIM
This paper presents a novel dynamic subchannel allocation scheme that can improve the cell capacity by coordinating the intercell interference (ICI) in a cellular orthogonal frequency division multiple access (OFDMA) system. The proposed scheme mitigates the ICI by adopting the virtual cell concept and improves the frequency reuse factor through subchannel reuse among different virtual cells. In particular, each virtual cell is assigned a primary and a secondary subchannel group, and each sector base station (BSs) allocates the subchannel resulting in the least ICI in probability out of the candidate subchannels to the mobile stations, dynamically searching from its primary group and then secondary group. In addition, an optional use of pico-cell overlay at the intersection of the virtual cells is also proposed to enhance the fairness of the proposed scheme with the BS-MS distance. Through computer simulation, it is shown that the proposed scheme has the advantages of improved cell capacity and fairness compared to the conventional schemes.
Yan DENG Wei-Qiang ZHANG Yan-Min QIAN Jia LIU
One typical phonotactic system for language recognition is parallel phone recognition followed by vector space modeling (PPRVSM). In this system, various phone recognizers are applied in parallel and fused at the score level. Each phone recognizer is trained for a known language, which is assumed to extract complementary information for effective fusion. But this method is limited by the large amount of training samples for which word or phone level transcription is required. Also, score fusion is not the optimal method as fusion at the feature or model level will retain more information than at the score level. This paper presents a new strategy to build and fuse parallel phone recognizers (PPR). This is achieved by training multiple acoustic diversified phone recognizers and fusing at the feature level. The phone recognizers are trained on the same speech data but using different acoustic features and model training techniques. For the acoustic features, Mel-frequency cepstral coefficients (MFCC) and perceptual linear prediction (PLP) are both employed. In addition, a new time-frequency cepstrum (TFC) feature is proposed to extract complementary acoustic information. For the model training, we examine the use of the maximum likelihood and feature minimum phone error methods to train complementary acoustic models. In this study, we fuse phonotactic features of the acoustic diversified phone recognizers using a simple linear fusion method to build the PPRVSM system. A novel logistic regression optimized weighting (LROW) approach is introduced for fusion factor optimization. The experimental results show that fusion at the feature level is more effective than at the score level. And the proposed system is competitive with the traditional PPRVSM. Finally, the two systems are combined for further improvement. The best performing system reported in this paper achieves an equal error rate (EER) of 1.24%, 4.98% and 14.96% on the NIST 2007 LRE 30-second, 10-second and 3-second evaluation databases, respectively, for the closed-set test condition.
A new state estimation algorithm is presented for a class of LTI systems that have an input disturbance in polynomial form and a sinusoidal sensor disturbance in the measurement output. Adaptation rules are developed for identifying the unknown magnitude, phase and frequency of the sensor disturbance from the system output measurement. For the application of the identification result to the state estimation problem, the sinusoidal signal with arbitrary initial phase has been considered in this paper. In order to test the performance of the proposed algorithm, comparative computer simulations have been carried out with a robust state observer. Simulation results show the effectiveness of the proposed method.
Motoki OGASAWARA Takanori NISHINO Kazuya TAKEDA
The separation and localization of sound source signals are important techniques for many applications, such as highly realistic communication and speech recognition systems. These systems are expected to work without such prior information as the number of sound sources and the environmental conditions. In this paper, we developed a dodecahedral microphone array and proposed a novel separation method with our developed device. This method refers to human sound localization cues and uses acoustical characteristics obtained by the shape of the dodecahedral microphone array. Moreover, this method includes an estimation method of the number of sound sources that can operate without prior information. The sound source separation performances were evaluated under simulated and actual reverberant conditions, and the results were compared with the conventional method. The experimental results showed that our separation performance outperformed the conventional method.
In this paper, we investigate the resource and power allocation schemes of partial block multi-carrier code division multiple access (PB/MC-CDMA) systems. In our proposed scheme, we manage transmit power depending on each user's channel state information (CSI). The objective is to maximize the average bit error ratio (BER) performance with minimal influence from the received signal-to-interference ratio (SIR), both of which are closely related to transmit power. To obtain additional performance improvement, our frequency band rearrangement scheme follows the transmit power control (TPC) process. We evaluate the performance of the proposed scheme using simulations. The results show that the proposed system provides superior performance compared to those of conventional systems.
Juinn-Horng DENG Jeng-Kuang HWANG Shu-Min LIAO
A differential cross-correlation cell ID identification algorithm is proposed for IEEE 802.16e OFDMA cellular system. The cell ID represents the number of the preamble selected by the base station in downlink mode. First, we construct the downlink (DL) preamble structure and signal model with carrier frequency offset (CFO) and channel effects. Next, in order to achieve the initial synchronization, a differential receiver with cross correlation for all preamble patterns is proposed to search for cell ID. Simulation results confirm that the proposed structure is suitable for ITU fading channels and outperforms the conventional cell search system.
Hirokazu KAMODA Thomas DERHAM Toru IWASAKI Takao KUKI
We fabricated and evaluated a prototype imaging system using the Simultaneous Frequency-Encoding technique, which is an active imaging technique that is potentially capable of fast frame-frequency imaging using a frequency-scanning antenna with only a single transceiver. The prototype performed simultaneous acquisition of pixels in elevation using Simultaneous Frequency-Encoding and performed a mechanical scan in azimuth. We also studied a ranging technique and incorporated it into the prototype. The ranging technique for Simultaneous Frequency-Encoding must take into account the characteristics of the frequency-scanning antenna, which are fundamental to Simultaneous Frequency-Encoding. We verified that ordinary range processing can be performed before frequency analysis with Simultaneous Frequency-Encoding, giving both range and angular profiles. The prototype was evaluated based on the radiation patterns of a receiver antenna comprising the frequency-scanning antenna and a reflector, on which both the image quality and ranging performance depend. Finally we conducted actual imaging tests and confirmed the capability of through-obstacle imaging. The frame frequency was only 0.1 Hz, which was due to the use of a slow mechanical scan in azimuth. However, assuming electronic beam forming is used instead of the mechanical scan, the frame frequency can be improved to several Hertz.
Jiangtao SUN Qing LIU Yong-Ju SUH Takayuki SHIBATA Toshihiko YOSHIMASU
A broadband balanced frequency doubler has been demonstrated in 0.25-µm SOI SiGe BiCMOS technology to operate from 22 GHz to 30 GHz. The measured fundamental frequency suppression of greater than 30 dBc is achieved by an internal low pass LC filter. In addition, a pair of matching circuits in parallel with the LO inputs results in high suppression with low input drive power. Maximum measured conversion gain of -6 dB is obtained at the input drive power as low as -1 dBm. The results presented indicate that the proposed frequency doubler can operate in broadband and achieve high fundamental frequency suppression with low input drive power.
Hing Cheung SO Kenneth Wing Kin LUI
Frequency estimation of a complex single-tone in additive white Gaussian noise from irregularly-spaced samples is addressed. In this Letter, we study the periodogram and weighted phase averager, which are standard solutions in the uniform sampling scenarios, for tackling the problem. It is shown that the estimation performance of both approaches can attain the optimum benchmark of the Cramér-Rao lower bound, although the former technique has a smaller threshold signal-to-noise ratio.
Masato YOSHIDA Seiji OKAMOTO Tatsunori OMIYA Keisuke KASAI Masataka NAKAZAWA
To meet the increasing demand to expand wavelength division multiplexing (WDM) transmission capacity, ultrahigh spectral density coherent optical transmission employing multi-level modulation formats has attracted a lot of attention. In particular, ultrahigh multi-level quadrature amplitude modulation (QAM) has an enormous advantage as regards expanding the spectral efficiency to 10 bit/s/Hz and even approaching the Shannon limit. We describe fundamental technologies for ultrahigh spectral density coherent QAM transmission and present experimental results on polarization-multiplexed 256 QAM coherent optical transmission using heterodyne and homodyne detection with a frequency-stabilized laser and an optical phase-locked loop technique. In this experiment, Raman amplifiers are newly adopted to decrease the signal power, which can reduce the fiber nonlinearity. As a result, the power penalty was reduced from 5.3 to 2.0 dB. A 64 Gbit/s data signal is successfully transmitted over 160 km with an optical bandwidth of 5.4 GHz.
In this letter, we propose a low-complexity coarse frequency offset estimation scheme in an orthogonal frequency division multiplexing (OFDM) system using non-uniform phased pilot symbols. In our approach, the pilot symbol used for frequency estimation is grouped into a number of pilot subsets so that the phase of pilots in each subset is unique. We show via simulations that such a design achieves not only a low computational load but also comparable performance, when compared to the conventional estimator.
In this paper, we design a practical time-reversal quasi-orthogonal space-time block code (TR-QO-STBC) system for broadband multi-input multi-output (MIMO) communications. We first modify the TR-QO-STBC encoding structure so that the interference between the transmitted blocks can be completely removed by linear processing. Two low complex decision-feedback equalization (DFE) schemes are then proposed. One is built from the frequency-domain decision-feedback equalization (FD-DFE). The derived bi-directive FD-DFE (BiD-FD-DFE) cancels the interference among the successive symbols along the time axis. The other one is the enhanced V-BLAST, which cancels the interference between the real and imaginary parts of the spectral components. They have distinct performance characteristics due to the different interference-cancellation strategies. The underlying orthogonal and symmetric characters of TR-QO-STBC are exploited to reduce the computational complexity. Computer simulations confirm that the proposed equalizers can achieve better performance than the existing schemes.
Masaki HIRANO Ryosuke YOTSUTANI Akihiro MORIMOTO
We obtained flat optical frequency combs by using the FM laser operation of a fiber ring laser and external intensity modulation. Extremely wide FM spectra can be easily obtained by the moderate internal phase modulation of an FM laser. We used an external intensity modulator to extract a linearly chirped part from the FM light in order to obtain flat spectra. In our experiments, we obtained a flat optical frequency comb with a spectral bandwidth of about 0.5 THz and a power deviation of less than 1.5 dB.
Kyongkuk CHO Jaeyoon LEE Dongweon YOON
In OFDM systems, in-phase and quadrature (I/Q) imbalances generated in the analog front-end introduce inter-channel interference and, consequently, error performance degradation. This letter provides an exact expression involving the two-dimensional (2-D) Gaussian Q-function for the error probability of an arbitrary 2-D modulated OFDM signal with I/Q imbalances. The effects of I/Q imbalances on the distribution of an AWGN and the error performance are analyzed.
Chin-Long WEY Shin-Yo LIN Hsu-Sheng WANG Hung-Lieh CHEN Chun-Ming HUANG
In UWB systems, data symbols are transmitted and received continuously. The Fast Fourier Transform (FFT) processor must be able to seamlessly process input/output data. This paper presents the design and implementation of a continuous data flow parallel memory-based FFT (CF-PMBFFT) processor without the use of input buffer for pre-loading the input data. The processor realizes a memory space of two N-words and multiple processing elements (PEs) to achieve the seamless data flow and meet the design requirement. The circuit has been fabricated in TSMC 0.18 µm 1P6M CMOS process with the supply voltage of 1.8 V. Measurement results of the test chip shows that the developed CF-PMBFFT processor takes a core area of 1.97 mm2 with a power consumption of 62.12 mW for a throughput rate of 528 MS/s.