The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] frequency(1407hit)

521-540hit(1407hit)

  • Theoretical Study on Performance Limit of Cutoff Frequency in Nano-Scale InAs HEMTs Based on Quantum-Corrected Monte Carlo Method

    Takayuki TAKEGISHI  Hisanao WATANABE  Shinsuke HARA  Hiroki I. FUJISHIRO  

     
    PAPER-III-V High-Speed Devices and Circuits

      Vol:
    E93-C No:8
      Page(s):
    1258-1265

    We theoretically study the performance limits of current-gain cutoff frequency, fT, for the HEMTs with InAs or In0.70Ga0.30As middle layers in the multi-quantum-well (MQW) channels by means of the quantum-corrected Monte Carlo (MC) method. We calculate the distribution of the delay time along the channel, τ(x), and define the effective gate length, Lg,eff, as the corresponding length to τ(x). By extrapolating Lg,eff to Lg = 0 nm, we estimate the lower limit of Lg,eff, Lg(0),eff. Then we estimate the performance limit of fT, fT(0), by extrapolating fT to Lg,eff(0). The estimated fT(0) are about 3.6 and 3.7 THz for the HEMTs with InAs middle layers of 5 and 8 nm in thickness, and about 3.0 THz for the HEMT with In0.70Ga0.30As middle layer of 8 nm in thickness, respectively. The higher fT(0) in the HEMTs with InAs middle layers are attributed to the increased average electron velocity, υd, in the channel. These results indicate the superior potential of the HEMTs using InAs in the channels. The HEMT with InAs middle layer of 8 nm in thickness shows the highest fT on condition of the same Lg because of its highest υd. However, the increased total channel thickness results in the longer Lg,eff(0), which leads to the restriction of fT(0). Therefore, in order to increase fT(0), it is essential to make Lg,eff short in addition to making υd high. Our results strongly encourage in making an effort to develop the HEMTs that operate in the terahertz region.

  • Frequency Estimator by LS Approximation of Narrow-Band Spectrum

    Cui YANG  Gang WEI  

     
    LETTER-Digital Signal Processing

      Vol:
    E93-A No:8
      Page(s):
    1553-1555

    Based on the least square (LS) approximation of sinusoidal signal in frequency domain by sample data, a frequency estimator is derived. Since sinusoidal signals are narrow-banded whereas white noise spreads equally in the whole spectrum, only narrow-band approximation around the actual tone is needed, and thus the influence of noise can be decreased significantly with high computational efficiency. Experimental results show that, without any iterations, the performance of the proposed estimator is close to the Cramer-Rao Bound (CRB), and has a lower SNR threshold compared with other existing estimators.

  • E-Band Low-Noise Amplifier MMICs Using Nanogate InGaAs/InAlAs HEMT Technology

    Issei WATANABE  Akira ENDOH  Takashi MIMURA  Toshiaki MATSUI  

     
    PAPER-III-V High-Speed Devices and Circuits

      Vol:
    E93-C No:8
      Page(s):
    1251-1257

    E-band low-noise amplifier (LNA) monolithic millimeter-wave integrated circuits (MMICs) were developed using pseudomorphic In0.75Ga0.25As/In0.52Al0.48As high electron mobility transistors (HEMTs) with a gate length of 50 nm. The nanogate HEMTs demonstrated a maximum oscillation frequency (fmax) of 550 GHz and a current-gain cutoff frequency (fT) of 450 GHz at room temperature, which is first experimental demonstration that fmax as high as 550 GHz are achievable with the improved one-step-recessed gate procedure. Furthermore, using a three-stage LNA-MMIC with 50-nm-gate InGaAs/InAlAs HEMTs, we achieved a minimum noise figure of 2.3 dB with an associated gain of 20.6 dB at 79 GHz.

  • Dispersion, High-Frequency and Power Characteristics of AlN/GaN Metal Insulator Semiconductor Field Effect Transistors with in-situ MOCVD Deposited Si3N4

    Sanghyun SEO  Eunjung CHO  Giorgi AROSHVILI  Chong JIN  Dimitris PAVLIDIS  Laurence CONSIDINE  

     
    PAPER-GaN-based Devices

      Vol:
    E93-C No:8
      Page(s):
    1245-1250

    The paper presents a systematic study of in-situ passivated AlN/GaN Metal Insulator Semiconductor Field Effect Transistors (MISFETs) with submicron gates. DC, high frequency small signal, large signal and low frequency dispersion effects are reported. The DC characteristics are analyzed in conjunction with the power performance of the device at high frequencies. Studies of the low frequency characteristics are presented and the results are compared with those of AlGaN/GaN High Electron Mobility Transistors (HEMTs). Small signal measurements showed a current gain cutoff frequency and maximum oscillation frequency of 49.9 GHz and 102.3 GHz respectively. The overall characteristics of the device include a peak current density of 335 mA/mm, peak extrinsic transconductance of 130 mS/mm, a maximum output power density of 533 mW/mm with peak power added efficiency (P.A.E.) of 41.3% and linear gain of 17 dB. The maximum frequency dispersion of transconductance and output resistance of the fabricated MISFETs is 20% and 21% respectively.

  • A Design Method for Variable Linear-Phase FIR Filters with Changing Multifactors for Checkweighers

    Toma MIYATA  Naoyuki AIKAWA  

     
    PAPER-Digital Signal Processing

      Vol:
    E93-A No:8
      Page(s):
    1400-1407

    Digital signal processing requires digital filters with variable frequency characteristics. A variable digital filter (VDF) is a filter whose frequency characteristics can be easily and instantaneously changed. In this paper, we present a design method for variable linear-phase finite impulse response (FIR) filters with multiple variable factors and a reduction method for the number of polynomial coefficients. The obtained filter has a high piecewise attenuation in the stopband. The stopband edge and the position and magnitude of the high piecewise stopband attenuation can be varied by changing some parameters. Variable parameters are normalized in this paper. An optimization methodology known as semidefinite programming (SDP) is used to design the filter. In addition, we present that the proposed VDF can be implemented using the Farrow structure, which suitable for real time signal processing. The usefulness of the proposed filter is demonstrated through examples.

  • An EM Absorber and Frequency Selective Shielding by Use of Metal Fiber Array Composites

    Takanori TSUTAOKA  Kenichi HATAKEYAMA  

     
    LETTER

      Vol:
    E93-B No:7
      Page(s):
    1858-1861

    The construction of EM absorber and frequency selective shielding has been investigated by using two dimensional metal fiber array (MFA) composites. The MFA composite shows a resonant type frequency dispersion in the complex relative permittivity spectra (εr = εr' - jεr") having a negative εr' region. The frequency characteristics of the conventional ferrite-rubber EM absorber can be improved by combining with the negative permittivity property of the MFA composite. A frequency selective shielding can be achieved by the evanescent EM wave propagation in the layered MFA composite structure.

  • Serial Iterative Joint Carrier Frequency Synchronization and Channel Estimation for OFDM

    Shaopeng WANG  Shihua ZHU  Yi LI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E93-B No:7
      Page(s):
    1906-1911

    A scheme that jointly estimates carrier frequency offset and channel is proposed for the orthogonal frequency division multiplexing (OFDM) system. In the proposed scheme, the carrier frequency offset (CFO) and the channel state information (CSI) are first estimated by an minimum mean square error (MMSE) estimator and an maximum likelihood (ML) estimator, respectively. By exchanging the estimation information between these two estimators, the final estimation of CFO and CSI is then obtained by an iterative method. In the iterative process, the effect of imperfect CSI is considered. It can improve the estimation precision for a shorter preamble and accelerate the iterative convergence rate. To reduce the complexity of the proposed scheme, a procedure is adopted to eliminate the inverse operation of covariance matrix that is recalculated at each iteration. In addition, a sufficient condition for the convergence of the proposed method is deduced. The numerical simulation results show that the BER performance of our scheme is better than that of joint MLE for a shorter preamble and is comparable to that of joint MLE for a longer preamble. Furthermore, the average iterative time of our method is reduced by half as compared to the MLE methods without considering the effect of imperfect CSI.

  • Single-Carrier Layered Space-Frequency Equalization with Time Domain Noise-Prediction for MIMO Systems

    Ang FENG  Qinye YIN  Le DING  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E93-B No:7
      Page(s):
    1897-1905

    Error-propagation is an important issue and should be carefully coped with in the decision-feedback equalizers (DFE). Ignoring the impact of error-propagation often leads to impractical laboratory results. In this paper, we investigate two novel layered space-frequency equalizers (LSFE) for single-carrier multiple-input multiple-output (MIMO) systems, where the recently proposed frequency-domain equalizer with time domain noise-predictor (FDE-NP) is adopted at each stage of the LSFE. We first derive the partially-connected LSFE with noise predictor (PC-LSFE-NP) which has exactly the same mean square error (MSE) as the conventional LSFE under the assumption of perfect feedback. However, if error-propagation is considered, the proposed PC-LSFE-NP can achieve better performance than the conventional LSFE due to the more reliable feedback output by the decoders. To reduce the interference from the not yet detected layers in the feedback section, we then introduce the fully-connected LSFE with noise predictor (FC-LSFE-NP), in which all layers are implicitly equalized within each stage and their decisions fed back internally. The powerful feedback filter of FC-LSFE-NP brings significant performance superiority over the conventional LSFE and PC-LSFE-NP with either perfect or imperfect feedback. Moreover, we propose a simple soft-demapper for the equalizers to avoid information loss during decoding, and thus, further improve the performance. Finally, we compare the performance of (PC/FC)-LSFE-NP with the existing schemes by computer simulations.

  • Experimental Quasi-Microwave Whole-Body Averaged SAR Estimation Method Using Cylindrical-External Field Scanning

    Yoshifumi KAWAMURA  Takashi HIKAGE  Toshio NOJIMA  

     
    PAPER-Biological Effects and Safety

      Vol:
    E93-B No:7
      Page(s):
    1826-1833

    The aim of this study is to develop a new whole-body averaged specific absorption rate (SAR) estimation method based on the external-cylindrical field scanning technique. This technique is adopted with the goal of simplifying the dosimetry estimation of human phantoms that have different postures or sizes. An experimental scaled model system is constructed. In order to examine the validity of the proposed method for realistic human models, we discuss the pros and cons of measurements and numerical analyses based on the finite-difference time-domain (FDTD) method. We consider the anatomical European human phantoms and plane-wave in the 2 GHz mobile phone frequency band. The measured whole-body averaged SAR results obtained by the proposed method are compared with the results of the FDTD analyses.

  • A Robust Derivative Constrained Receiver for MC-CDMA Systems

    Tsui-Tsai LIN  Tung-Chou CHEN  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E93-B No:7
      Page(s):
    1948-1952

    In this letter, a derivative constraint minimum output energy (MOE) receiver is proposed the offers enhanced robustness against carrier frequency offset (CFO). A theoretical analysis of the output signal-to-interference-plus-noise ratio (SINR) is presented to confirm its efficacy. Numerical results demonstrate that the proposed receiver basically offers the same performance as an optimal receiver with no CFO present.

  • Frequency Dependence Measurements of Complex Permittivity of Dielectric Plates Using TE0m1 Modes in a Circular Cavity

    Hossain S. M. NAZARAT  Yoshio KOBAYASHI  Zhewang MA  

     
    PAPER

      Vol:
    E93-C No:7
      Page(s):
    1126-1131

    A circular cavity resonance method is improved to measure the frequency dependence of complex permittivity of a dielectric plate by using multimode TE0m1 with integer m. The measurement principle is based on a rigorous analysis by the Ritz-Galerkin method. A new circular cavity with lowered height is designed from a mode chart of a cavity to decrease the number of unwanted modes near the TE0m1 modes. A copper cavity having 20 GHz for the TE011 mode was constructed based on this design. For glass cloth PTFE, RT/duroid 6010 and FR-4 dielectric plates, the frequency dependences are measured from resonant frequencies for the TE0m1 (m = 1, 2, 3 ...) modes. These measured results agree well with ones measured by using the conventional four different size cavities with TE011 mode. It is verified that the designed cavity structure is useful to measure the frequency dependence of low loss dielectric plates.

  • Upper Bound and Dispersion of the Outdoor Powerline Channel Frequency-Response

    Flavia GRASSI  Sergio A. PIGNARI  

     
    PAPER-Communication System EMC, Power System EMC

      Vol:
    E93-B No:7
      Page(s):
    1814-1820

    In this paper, multiconductor transmission line (MTL) modelling is used to characterize the frequency response and dispersion of the low-voltage outdoor powerline channel. The analysis focuses on a single transmitter-to-receiver link and all the possible connection schemes associated with that link. By resorting to modal analysis, approximate analytical upper bounds of the channel frequency-response are derived for simplified but representative network configurations involving power cables with star-quad cross-section. Numerical solution of the MTL equations is used to validate the theoretical work and to show the dispersion of the channel frequency-responses, which results to be of the order of 20 dB.

  • A Differential MIMO SC-FDE Transceiver Design over Multipath Fast Fading Channels

    Juinn-Horng DENG  Jeng-Kuang HWANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E93-B No:7
      Page(s):
    1939-1942

    In this paper, we propose a new differential MIMO single-carrier system with frequency-domain equalization (SC-FDE) aided by the insertion of cyclic prefix. This block transmission system not only inherits all the merits of the SISO SC-FDE system, but is also equipped with a differential space-time block coding (DSTBC) such as to combat the fast-changing frequency selective fading channels without the needs to estimate and then compensate the channel effects. Hence, for practical applications, it has the additional merits of decoding simplicity and robustness against high mobility transmission environments. Computer simulations show that the proposed system can provide diversity benefit as the non-differential system does, while greatly reducing the receiver complexity.

  • Cell Edge Capacity Improvement by Using Adaptive Base Station Cooperation in Cellular Networks with Fractional Frequency Reuse

    Liang XU  Koji YAMAMOTO  Hidekazu MURATA  Susumu YOSHIDA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E93-B No:7
      Page(s):
    1912-1918

    The present paper focuses on the application of the base station cooperation (BSC) technique in fractional frequency reuse (FFR) networks. Fractional frequency reuse is considered to be a promising scheme for avoiding the inter-cell interference problem in OFDMA cellular systems, such as WiMAX, in which the edge mobile stations (MSs) of adjacent cells use different subchannels for separate transmission. However, the problem of FFR is that the cell edge spectral efficiency (SE) is much lower than that of the cell center. The BSC technique, in which adjacent BSs perform cooperative transmission for one cell edge MS with the same channel, may improve the cell edge SE. However, since more BSs transmit signals for one cell edge MS, the use of BSC can also increase the inter-cell interference, which might degrade the network performance. In this paper, with a focus on this tradeoff, we propose an adaptive BSC scheme in which BSC is only performed for the cell edge MSs that can achieve a significant capacity increase with only a slight increase in inter-cell interference. Moreover, a channel reallocation scheme is proposed in order to further improve the performance of the adaptive BSC scheme. The simulation results reveal that, compared to the conventional FFR scheme, the proposed schemes are effective for improving the performance of FFR networks.

  • Low Phase Noise, 18 kHz Frequency Tuning Step, 5 GHz, 15 bit Digitally Controlled Oscillator in 0.18 µm CMOS Technology

    Ramesh K. POKHAREL  Kenta UCHIDA  Abhishek TOMAR  Haruichi KANAYA  Keiji YOSHIDA  

     
    PAPER

      Vol:
    E93-C No:7
      Page(s):
    1007-1013

    A method to realize the fine frequency-tuning steps using tiny capacitors instead of Metal-Insulator-Metal (MIM) capacitors is proposed for a digitally controlled oscillator (DCO). The tiny capacitors are realized by the coplanar transmission lines which are arranged unsymmetrical in a 6 metal layers (M6) foundry of 0.18 µm CMOS technology. These transmission line based capacitors are designed by using electro-magnetic field simulator, and co-designed by using SPICE simulator. Finally, these capacitors are employed to design 15 bit DCO and fabricated the proposed DCO in 0.18 µm CMOS technology, and tested. The measured phase noise of DCO was -118.3 dBc/Hz (@1 MHz offset frequency), and the oscillating frequency tuned from 4.86 GHz to 5.36 GHz in the minimum frequency-tuning step of 18 kHz.

  • A Novel Predistorter Design for Nonlinear Power Amplifier with Memory Effects in OFDM Communication Systems Using Orthogonal Polynomials

    Yitao ZHANG  Kiyomichi ARAKI  

     
    PAPER

      Vol:
    E93-C No:7
      Page(s):
    983-990

    Orthogonal frequency division multiplexing (OFDM) signals have high peak-to-average power ratio (PAPR) and cause large nonlinear distortions in power amplifiers (PAs). Memory effects in PAs also become no longer ignorable for the wide bandwidth of OFDM signals. Digital baseband predistorter is a highly efficient technique to compensate the nonlinear distortions. But it usually has many parameters and takes long time to converge. This paper presents a novel predistorter design using a set of orthogonal polynomials to increase the convergence speed and the compensation quality. Because OFDM signals are approximately complex Gaussian distributed, the complex Hermite polynomials which have a closed-form expression can be used as a set of orthogonal polynomials for OFDM signals. A differential envelope model is adopted in the predistorter design to compensate nonlinear PAs with memory effects. This model is superior to other predistorter models in parameter number to calculate. We inspect the proposed predistorter performance by using an OFDM signal referred to the IEEE 802.11a WLAN standard. Simulation results show that the proposed predistorter is efficient in compensating memory PAs. It is also demonstrated that the proposal acquires a faster convergence speed and a better compensation effect than conventional predistorters.

  • An Integrated CMOS Front-End Receiver with a Frequency Tripler for V-Band Applications

    Po-Hung CHEN  Min-Chiao CHEN  Chun-Lin KO  Chung-Yu WU  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E93-C No:6
      Page(s):
    877-883

    A direct-conversion receiver integrated with the CMOS subharmonic frequency tripler (SFT) for V-band applications is designed, fabricated and measured using 0.13-µm CMOS technology. The receiver consists of a low-noise amplifier, a down-conversion mixer, an output buffer, and an SFT. A fully differential SFT is introduced to relax the requirements on the design of the frequency synthesizer. Thus, the operational frequency of the frequency synthesizer in the proposed receiver is only 20 GHz. The fabricated receiver has a maximum conversion gain of 19.4 dB, a minimum single-side band noise figure of 10.2 dB, the input-referred 1-dB compression point of -20 dBm and the input third order inter-modulation intercept point of -8.3 dB. It draws only 15.8 mA from a 1.2-V power supply with a total chip area of 0.794 mm0.794 mm. As a result, it is feasible to apply the proposed receiver in low-power wireless transceiver in the V-band applications.

  • Low-Cost Implementation of Single Frequency Estimation Scheme Using Auto-Correlation Function

    Hyun YANG  Young-Hwan YOU  

     
    LETTER-Digital Signal Processing

      Vol:
    E93-A No:6
      Page(s):
    1251-1253

    This letter proposes a low-complexity scheme for estimating the frequency of a complex sinusoid in flat fading channels. The proposed estimator yields an estimation performance that is comparable to the existing autocorrelation-based frequency estimator, while retaining the same frequency range. Its implementation complexity is much lower than the conventional scheme, thus this allows for fast estimation in real time.

  • Time Delay Estimator Based on Frequency Estimation Approach

    Kenneth Wing Kin LUI  Hing Cheung SO  

     
    LETTER-Digital Signal Processing

      Vol:
    E93-A No:6
      Page(s):
    1248-1250

    In this Letter, the problem of estimating the time-difference-of-arrival between signals received at two spatially separated sensors is addressed. By taking discrete Fourier transform of the sensor outputs, time delay estimation corresponds to finding the frequency of a noisy sinusoid with time-varying amplitude. The generalized weighted linear predictor is utilized to estimate the time delay and it is shown that its estimation accuracy attains Cramér-Rao lower bound.

  • Design of Multicarrier OFDM Modulator/Demodulator Based on Discrete Hartley Transform

    Muh-Tian SHIUE  Chin-Kuo JAO  Pei-Shin CHEN  

     
    PAPER-Communication Theory and Signals

      Vol:
    E93-A No:6
      Page(s):
    1016-1023

    In this paper, a novel orthogonal frequency-division multiplexing (OFDM) modulator/demodulator based on real-valued discrete Hartley transform (DHT) is presented and implemented for the IEEE 802.11a/g wireless local area network (LAN). Instead of the conventional complex-valued fast Fourier transform (FFT) for OFDM systems, the proposed architecture employs two real-valued fast DHT (FHT) kernels and one post processing unit. By taking advantage of the real-valued operation of FHT, this approach reduces the number of multiplications compared with the radix-2 FFT. The proposed DHT-based modulator/demodulator was designed and fabricated in 0.18-µm CMOS technology with a core area of 928935 µm2. The average power consumption is about 20.16 mW at 20 MHz and 1.8 V supply voltage. Measurement results of the integrated circuit illustrate its superior chip area and power consumption.

521-540hit(1407hit)