Hee-Suk PANG Jun-Seok LIM Oh-Jin KWON Bhum Jae SHIN
We propose an iterative frequency estimation method for accuracy improvement of discrete Fourier transform (DFT) phase-based methods. It iterates frequency estimation and phase calculation based on the DFT phase-based methods, which maximizes the signal-to-noise floor ratio at the frequency estimation position. We apply it to three methods, the phase difference estimation, the derivative estimation, and the arctan estimation, which are known to be among the best DFT phase-based methods. Experimental results show that the proposed method shows meaningful reductions of the frequency estimation error compared to the conventional methods especially at low signal-to-noise ratio.
Guobing CHENG Yue XIAO Shaoqian LI Hui YAN
OFDM/offset-QAM (OFDM/OQAM) has been proven to be a promising multi-carrier transmission technique. However, carrier frequency offset (CFO) can lead to severe inter-carrier interference (ICI) and performance degradation. Meanwhile, channel estimation is also an important issue because of the intrinsic characteristics of OFDM/OQAM. In this paper, a novel pilot structure and a frequency-domain cross-correlation algorithm are proposed for the joint CFO and channel estimation. Analysis and simulation results validate the effectiveness of the proposed pilot structure and estimation algorithm.
IlKwon CHO Se-Jin KIM Choong-Ho CHO
In this letter, we propose a novel resource allocation scheme to enhance downlink system performance for orthogonal frequency division multiple access (OFDMA) and time division duplex (TDD) based femtocell networks. In the proposed scheme, the macro base station (mBS) and femto base stations (fBSs) service macro user equipments (mUEs) and femto user equipments (fUEs) in inner and outer zones in different periods to reduce interference substantially. Simulations show the proposed scheme outperforms femtocell networks with fractional frequency reuse (FFR) systems in terms of the system capacity and outage probability for mUEs and fUEs.
This letter proposes two efficient schemes for the joint estimation of symbol timing offset (STO) and carrier frequency offset (CFO) in orthogonal frequency division multiplexing (OFDM) based IEEE 802.16e systems. Avoiding the effects of inter symbol interference (ISI) over delay spread by the multipath fading channel is a primary purpose in the letter. To do this, the ISI-corrupted CP is excluded when a correlation function is devised for both schemes, achieving the improved performance. To demonstrate the efficiency of the proposed methods, the performance is compared with the conventional method and is evaluated by the mean square error (MSE), acquisition range of CFO, and complexity comparison.
Based on our previous work, this work presents a complete method for time-domain processing of frequency-domain data with evenly-spaced frequency indices, together with its application. The proposed method can be used to calculate the cross spectral and power spectral densities for the frequency indices of interest. A promising application for the time-domain processing of frequency-domain data, particularly for calculating the summation of frequency-domain cross- and auto-correlations in orthogonal frequency-division multiplexing (OFDM) systems, is studied. The advantages of the time-domain processing of frequency-domain data are 1) the ability to rapidly acquire the properties that are readily available in the frequency domain and 2) the reduced complexity. The proposed fast algorithm directly employs time-domain samples, and hence, does not need the fast Fourier transform (FFT) operation. The proposed algorithm has a lower complexity (required complex multiplications ∼ O(N)) than conventional techniques.
Jaeyoon LEE Dongweon YOON Hoon YOO
In an orthogonal frequency division multiplexing (OFDM) system, carrier frequency offset (CFO) causes intercarrier interference (ICI) which significantly degrades the system error performance. In this paper we provide a closed-form expression to evaluate the exact error probabilities of arbitrary 2-D modulation OFDM systems with CFO, and analyze the effect of CFO on error performance.
Jaemin JEUNG Seungmyeong JEONG Jaesung LIM
We propose an outband sensing-based IEEE 802.11h protocol without a full dynamic frequency selection (DFS) test. This scheme has two features. Firstly, every station performs a cooperative outband sensing, instead of inband sensing during a quiet period. And secondly, as soon as a current channel becomes bad, every station immediately hops to a good channel using the result of outband sensing. Simulation shows the proposed scheme increases network throughput against the legacy IEEE 802.11h.
This paper proposes a direction-of-arrival (DOA) estimation method of multiple speech sources from a stereophonic mixture in an underdetermined case where the number of sources exceeds the number of sensors. The method relies on the sparseness of speech signals in time-frequency (T-F) domain representation which means multiple independent speakers have a small overlap. At first, a selection of T-F cells bearing reliable spatial information is proposed by an introduced reliability index which is defined by the estimated interaural phase difference at each T-F cell. Then, a statistical error propagation model between the phase difference at T-F cell and its consequent DOA is introduced. By employing this model and the sparseness in T-F domain the DOA estimation problem is altered to obtaining local peaks of probability density function of DOA. Finally the kernel density estimator approach based on the proposed statistical model is applied. The performance of the proposed method is assessed by conducted experiments. Our method outperforms others both in accuracy for real observed data and in robustness for simulation with additional diffused noise.
In this paper, a theoretical analysis of current-controlled (CC-) MOS current mode logic (MCML) is reported. Furthermore, the circuit performance of the CC-MCML with the auto-detection of threshold voltage (Vth) fluctuation is evaluated. The proposed CC-MCML with the auto-detection of Vth fluctuation automatically suppresses the degradation of circuit performance induced by the Vth fluctuations of the transistors automatically, by detecting these fluctuations. When a Vth fluctuation of ± 0.1 V occurs on the circuit, the cutoff frequency of the circuit is increased from 0 Hz to 3.5 GHz by using the proposed CC-MCML with the auto-detection of Vth fluctuation.
Yun Kyoung HAN Jin-Ho CHUNG Kyeongcheol YANG
No nontrivial optimal sets of frequency-hopping sequences (FHSs) of period 2(2n-1) for a positive integer n ≥ 2 have been found so far, when their frequency set sizes are less than their periods. In this paper, systematic doubling methods to construct new FHS sets are presented under the constraint that the set of frequencies has size less than or equal to 2n. First, optimal FHS sets with respect to the Peng-Fan bound are constructed when frequency set size is either 2n-1 or 2n. And then, near-optimal FHS sets with frequency set size 2n-1 are designed by applying the Chinese Remainder Theorem to Sidel'nikov sequences, whose FHSs are optimal with respect to the Lempel-Greenberger bound. Finally, a general construction is given for near-optimal FHS sets whose frequency set size is less than 2n-1. Our constructions give new parameters not covered in the literature, which are summarized in Table1.
Do-Hoon KIM Kyu-Min KANG Chungyong LEE
We present a carrier and sampling frequency offset estimation and compensation scheme for a multi-band orthogonal frequency division multiplexing (MB-OFDM) ultra-wideband (UWB) modem. We first perform initial carrier frequency offset (CFO) estimation and compensation during the preamble period, and then conduct the estimation and compensation of the residual CFO and sampling frequency offset (SFO) during the payload period. The proposed design scheme reduces the logic gate count of the frequency offset compensation block by about 10%, while it gives almost the same performance at the packet error rate (PER) of 10-4 in the CM1 channel. The frequency offset estimation and compensation block is implemented using 90 nm CMOS technology and tested.
In orthogonal frequency division multiple access (OFD-MA) uplink, the distortions introduced by both multiple carrier frequency offsets (CFOs) and in-phase and quadrature-phase (IQ) imbalances will severely degrade the system performance. With both CFOs and IQ imbalances, signal detection at the receiver becomes hard, if not impossible. In this letter, a linear receiver is proposed to cope with the distortions at a slight drop in system transmission rate. The analysis and simulations demonstrate the effectiveness of the proposed approach.
Leonardo LANANTE, Jr. Masayuki KUROSAKI Hiroshi OCHI
Conventional algorithms for the joint estimation of carrier frequency offset (CFO) and I/Q imbalance no longer work when the I/Q imbalance depends on the frequency. In order to correct the imbalance across many frequencies, the compensator needed is a filter as opposed to a simple gain and phase compensator. Although, algorithms for estimating the optimal coefficients of this filter exist, their complexity is too high for hardware implementation. In this paper we present a new low complexity algorithm for joint estimation of CFO and frequency dependent I/Q imbalance. For the first part, we derive the estimation scheme using the linear least squares algorithm and examine its floating point performance compared to conventional algorithms. We show that the proposed algorithm can completely eliminate BER floor caused by CFO and I/Q imbalance at a lesser complexity compared to conventional algorithms. For the second part, we examine the hardware complexity in fixed point hardware and latency of the proposed algorithm. Based on BER performance, the circuit needs a wordlength of at least 16 bits in order to properly estimate CFO and I/Q imbalance. In this configuration, the circuit is able to achieve a maximum speed of 115.9 MHz in a Virtex 5 FPGA.
A new frequency estimator for a single real-valued sinusoid signal in white noise is proposed. The new estimator uses the Pisarenko Harmonic Decomposer (PHD) estimator to get a coarse frequency estimate and then makes use of multiple correlation lags to obtain an adjustment term. For the limited-length single sinusoid, its correlation has the same frequency as itself but with a non-zero phase. We propose to use Taylor series to expand the correlation at the PHD coarse estimated frequency with amplitude and phase of the correlation into consideration. Simulation results show that this new method improves the estimation performance of the PHD estimator. Moreover, when compared with other existing estimator, the mean square frequency error of the proposed method is closer to the Cramer-Rao Lower Bound (CRLB) for certain SNR range.
Tae-Kyeong CHO Chang-Yeong OH Tae-Jin LEE
In multi-cell OFDMA-based networks, co-channel interference (CCI) is inevitable when the frequency reuse scheme is used. The CCI affects the performance of users, especially that of cell edge users. Several frequency reuse schemes and subcarrier allocation algorithms have been proposed to solve the CCI problem. Nevertheless, it is difficult to improve both the cell capacity and the performance of cell edge users since they have a trade-off. In this paper, we propose a new balanced frequency reuse (BFR) as a new frequency partitioning scheme that gives more power to the users in the outer region and allocates more subcarriers to the users in the inner region. In addition, we propose ordering and directional subcarrier allocation (ODSA) for our frequency partitioning proposal to mitigate the CCI effectively when cells have heterogeneous traffic loads. The performance of the proposed BFR with the ODSA algorithm is investigated via analyses and simulations. Performance evaluation shows that the proposed BFR with the ODSA algorithm can increase both the spectral efficiency and the performance of cell edge users if the transmission power is appropriately handled.
Suguru OKUYAMA Tetsuya YAMAMOTO Kazuki TAKEDA Fumiyuki ADACHI
In this paper, we propose an iterative minimum mean square error detection with interference cancellation (MMSED-IC) for frequency-domain filtered single carrier (SC)-frequency-division multiple-access (FDMA) uplink transmission. The use of a square-root Nyquist transmit filter reduces the peak-to-average power ratio (PAPR) while increases the frequency-diversity gain. However, if carrier-frequency separation among multiple-access users is kept the same as the one used for the case of roll-off factor α=0 (i.e., brick-wall filter), then the adjacent users' spectra will overlap and multi-user interference (MUI) occurs. The proposed MMSED-IC can sufficiently suppress the MUI from adjacent users while achieving the maximum frequency-diversity gain. We apply the proposed MMSED-IC to a packet access using filtered SC-FDMA, multi-input multi-output (MIMO) multiplexing, and hybrid automatic repeat request (HARQ). It is shown by computer simulation that filtered SC-FDMA with α=1 can achieve higher throughput than orthogonal frequency division multiple access (OFDMA).
Obed PEREZ-CORTES Aaron ALBORES-MEJIA Horacio SOTO-ORTIZ
To characterize and predict the dynamics of the nonlinear polarization rotation in SOAs, an experimental method based on the frequency response technique and a model based on the density matrix and effective index formalisms are presented. Both determine the angular displacement, at the Poincare Sphere, that produces the evolution of the polarization of the output signal.
Chedlia BEN NAILA Kazuhiko WAKAMORI Mitsuji MATSUMOTO
Radio frequency on free-space optical (RoFSO) technology is regarded as a new universal platform for enabling seamless convergence of fiber and FSO communication networks, thus extending broadband connectivity to underserved areas. In this paper, we investigate the performance to characterize the transmission of code division multiple access (CDMA) based wireless signals over RoFSO system using aperture averaging (AA) technique under strong turbulence conditions. An analytical model including a modified carrier-to-noise-plus- interference ratio (CNIR) form and a novel closed-form expression for the bit-error rate (BER) is derived. Unlike earlier work, our model takes into consideration the effect of using the AA technique modeled by the gamma-gamma distribution, the optical noises, the intermodulation distortion term due to the laser diode non-linearity and the multiple interference access. By investigating the impact of AA on our model in the strong turbulence regime, we show that there is a design trade-off between the receiver lens aperture and the number of users to achieve a required CNIR ensuring a substantial scintillation fade reduction. The presented work can be used as baseline for the design and performance evaluation of the RoFSO system's ability to transmit different broadband wireless services signals over turbulent FSO links in real scenarios.
Based on the substrate integrated waveguide (SIW) technology, a new type of varactor-tuned radial power divider has been developed with a single bias supply. The varactors are used as tuning elements and allow for a frequency agile behavior. In addition, bandwidth characteristics have been analysed with group-delay. It has been measured with a single bias supply ranging from 6 V to 12 V that the center frequency of the power divider can be adjusted from 6.6 GHz to 7.2 GHz (600 MHz, 11.5%) while maintaining a low insertion loss (< 1 dB) in the passband.
Sanghun YOON Dae-Gun OH Jong-Wha CHONG Tae Moon ROH Jong-Kee KWON Jongdae KIM
In this letter, we present a novel timing offset estimation method for chirp-based communication systems which is robust against frequency offset. For robust timing offset estimation, we propose a partial cross-correlation and differential multiplication method using up and down chirp symbols. The performances of the proposed estimator in indoor multipath channel model provided by IEEE 802.15.4a standard are presented in terms of mean-square error (MSE) obtained by computer simulation. The simulation results show that the proposed estimator has a significantly smaller MSE than the conventional estimators.