Orthogonal frequency division multiplexing (OFDM) signals have high peak-to-average power ratio (PAPR) and cause large nonlinear distortions in power amplifiers (PAs). Memory effects in PAs also become no longer ignorable for the wide bandwidth of OFDM signals. Digital baseband predistorter is a highly efficient technique to compensate the nonlinear distortions. But it usually has many parameters and takes long time to converge. This paper presents a novel predistorter design using a set of orthogonal polynomials to increase the convergence speed and the compensation quality. Because OFDM signals are approximately complex Gaussian distributed, the complex Hermite polynomials which have a closed-form expression can be used as a set of orthogonal polynomials for OFDM signals. A differential envelope model is adopted in the predistorter design to compensate nonlinear PAs with memory effects. This model is superior to other predistorter models in parameter number to calculate. We inspect the proposed predistorter performance by using an OFDM signal referred to the IEEE 802.11a WLAN standard. Simulation results show that the proposed predistorter is efficient in compensating memory PAs. It is also demonstrated that the proposal acquires a faster convergence speed and a better compensation effect than conventional predistorters.
Flavia GRASSI Sergio A. PIGNARI
In this paper, multiconductor transmission line (MTL) modelling is used to characterize the frequency response and dispersion of the low-voltage outdoor powerline channel. The analysis focuses on a single transmitter-to-receiver link and all the possible connection schemes associated with that link. By resorting to modal analysis, approximate analytical upper bounds of the channel frequency-response are derived for simplified but representative network configurations involving power cables with star-quad cross-section. Numerical solution of the MTL equations is used to validate the theoretical work and to show the dispersion of the channel frequency-responses, which results to be of the order of 20 dB.
Hossain S. M. NAZARAT Yoshio KOBAYASHI Zhewang MA
A circular cavity resonance method is improved to measure the frequency dependence of complex permittivity of a dielectric plate by using multimode TE0m1 with integer m. The measurement principle is based on a rigorous analysis by the Ritz-Galerkin method. A new circular cavity with lowered height is designed from a mode chart of a cavity to decrease the number of unwanted modes near the TE0m1 modes. A copper cavity having 20 GHz for the TE011 mode was constructed based on this design. For glass cloth PTFE, RT/duroid 6010 and FR-4 dielectric plates, the frequency dependences are measured from resonant frequencies for the TE0m1 (m = 1, 2, 3 ...) modes. These measured results agree well with ones measured by using the conventional four different size cavities with TE011 mode. It is verified that the designed cavity structure is useful to measure the frequency dependence of low loss dielectric plates.
Shaopeng WANG Shihua ZHU Yi LI
A scheme that jointly estimates carrier frequency offset and channel is proposed for the orthogonal frequency division multiplexing (OFDM) system. In the proposed scheme, the carrier frequency offset (CFO) and the channel state information (CSI) are first estimated by an minimum mean square error (MMSE) estimator and an maximum likelihood (ML) estimator, respectively. By exchanging the estimation information between these two estimators, the final estimation of CFO and CSI is then obtained by an iterative method. In the iterative process, the effect of imperfect CSI is considered. It can improve the estimation precision for a shorter preamble and accelerate the iterative convergence rate. To reduce the complexity of the proposed scheme, a procedure is adopted to eliminate the inverse operation of covariance matrix that is recalculated at each iteration. In addition, a sufficient condition for the convergence of the proposed method is deduced. The numerical simulation results show that the BER performance of our scheme is better than that of joint MLE for a shorter preamble and is comparable to that of joint MLE for a longer preamble. Furthermore, the average iterative time of our method is reduced by half as compared to the MLE methods without considering the effect of imperfect CSI.
Shan ZENG Wenjian YU Xianlong HONG Chung-Kuan CHENG
In this paper, an efficient method is proposed to accurately analyze large-scale power/ground (P/G) networks, where inductive parasitics are modeled with the partial reluctance. The method is based on frequency-domain circuit analysis and the technique of vector fitting, and obtains the time-domain voltage response at given P/G nodes. The frequency-domain circuit equation including partial reluctances is derived, and then solved with the GMRES algorithm with rescaling, preconditioning and recycling techniques. With the merit of sparsified reluctance matrix and iterative solving techniques for the frequency-domain circuit equations, the proposed method is able to handle large-scale P/G networks with complete inductive modeling. Numerical results show that the proposed method is orders of magnitude faster than HSPICE, several times faster than INDUCTWISE, and capable of handling the inductive P/G structures with more than 100,000 wire segments.
Muh-Tian SHIUE Chin-Kuo JAO Pei-Shin CHEN
In this paper, a novel orthogonal frequency-division multiplexing (OFDM) modulator/demodulator based on real-valued discrete Hartley transform (DHT) is presented and implemented for the IEEE 802.11a/g wireless local area network (LAN). Instead of the conventional complex-valued fast Fourier transform (FFT) for OFDM systems, the proposed architecture employs two real-valued fast DHT (FHT) kernels and one post processing unit. By taking advantage of the real-valued operation of FHT, this approach reduces the number of multiplications compared with the radix-2 FFT. The proposed DHT-based modulator/demodulator was designed and fabricated in 0.18-µm CMOS technology with a core area of 928935 µm2. The average power consumption is about 20.16 mW at 20 MHz and 1.8 V supply voltage. Measurement results of the integrated circuit illustrate its superior chip area and power consumption.
This letter proposes a low-complexity scheme for estimating the frequency of a complex sinusoid in flat fading channels. The proposed estimator yields an estimation performance that is comparable to the existing autocorrelation-based frequency estimator, while retaining the same frequency range. Its implementation complexity is much lower than the conventional scheme, thus this allows for fast estimation in real time.
Kenneth Wing Kin LUI Hing Cheung SO
In this Letter, the problem of estimating the time-difference-of-arrival between signals received at two spatially separated sensors is addressed. By taking discrete Fourier transform of the sensor outputs, time delay estimation corresponds to finding the frequency of a noisy sinusoid with time-varying amplitude. The generalized weighted linear predictor is utilized to estimate the time delay and it is shown that its estimation accuracy attains Cramér-Rao lower bound.
Po-Hung CHEN Min-Chiao CHEN Chun-Lin KO Chung-Yu WU
A direct-conversion receiver integrated with the CMOS subharmonic frequency tripler (SFT) for V-band applications is designed, fabricated and measured using 0.13-µm CMOS technology. The receiver consists of a low-noise amplifier, a down-conversion mixer, an output buffer, and an SFT. A fully differential SFT is introduced to relax the requirements on the design of the frequency synthesizer. Thus, the operational frequency of the frequency synthesizer in the proposed receiver is only 20 GHz. The fabricated receiver has a maximum conversion gain of 19.4 dB, a minimum single-side band noise figure of 10.2 dB, the input-referred 1-dB compression point of -20 dBm and the input third order inter-modulation intercept point of -8.3 dB. It draws only 15.8 mA from a 1.2-V power supply with a total chip area of 0.794 mm0.794 mm. As a result, it is feasible to apply the proposed receiver in low-power wireless transceiver in the V-band applications.
Chul NAM Joon-Sung PARK Young-Gun PU Kang-Yoon LEE
This paper presents a wide range DCO with fine discrete tuning steps using a ΣΔ modulation technique for UWB frequency synthesizer. The proposed discrete tuning scheme provides a low effective frequency resolution without any degradation of the phase noise performance. With its three step discrete tunings, the DCO simultaneously has a wide tuning range and fine tuning steps. The frequency synthesizer was implemented using 0.13 µm CMOS technology. The tuning range of the DCO is 5.8-6.8 GHz with an effective frequency resolution of 3.9 kHz. It achieves a measured phase noise of -108 dBc/Hz at 1 MHz offset and a tuning range of 16.8% with the power consumption of 5.9 mW. The figure of merit with the tuning range is -181.5 dBc/Hz.
In this work, a divide-by-2 injection locked frequency divider (ILFD) operating in the V-band with a low DC power consumption has been developed in a commercial 0.13-µm Si RFCMOS technology. The bias current path was separated from the injection signal path, which enabled a small supply voltage of 0.5 V, leading to a DC power consumption of only 0.31 mW. To the authors' best knowledge, this is the lowest power consumption reported for mm-wave ILFDs at the point of writing. All inductors and interconnection lines were designed based on EM (electromagnetic) simulator for precise prediction of circuit performance. With varactor tuning voltage ranged for 0-1.2 V, the free-running oscillation frequency varied from 27.43 to 28.06 GHz. At 0 dBm input power, the frequency divider exhibited a locking range of 5.8 GHz from 53 to 58.8 GHz without external tuning mechanism. The fabricated circuit size is 0.72 mm 0.62 mm including the RF and DC supply pads.
Wan-Rone LIOU Mei-Ling YEH Sheng-Hing KUO Yao-Chain LIN
A low-voltage quadrature up-conversion CMOS mixer for 5-GHz wireless communication applications is designed with a TSMC 0.18-µm process. The fold-switching technique is used to implement the low-voltage double balanced quadrature mixer. A miniature lumped-element microwave broadband rat-race hybrid and RLC shift network are used for the local oscillator and the intermediate frequency port design, respectively. The measured results demonstrate that the mixer can reach a high conversion gain, a low noise figure (NF), and a high linearity. The mixer exhibits improvement in noise, conversion gain, and image rejection. The mixer shows a conversion gain of 16 dB, a noise figure of 12.8 dB, an image rejection of 45 dB, while dissipating 15.5 mW for an operating voltage at 1 V.
Osamu TAKYU Yohtaro UMEDA Masao NAKAGAWA
Two novel frequency rotation techniques that suppress multipath interference and increase the frequency diversity gain are proposed for uplink IFDMA systems. These benefits are especially important as the performance of traditional IFDMA falls significantly when the number of simultaneous accessing users becomes large. Frequency rotation was originally proposed to suppress the multipath interference and enlarge the frequency diversity gain of downlink access. Unfortunately, it cannot be applied to the uplink due to the loss of orthogonality among users in the frequency domain. In the proposed frequency rotation techniques, users do not share the multiple frequency orthogonal channels and thus orthogonality among users is maintained. The proposed technique is verified by computer simulations.
Tzuen-Hsi HUANG Yuan-Ru TSENG Shang-Hsun WU
This paper presents a real integration of a 5.8-GHz injection-locked quadrature local oscillator that includes two LC-tuned injection-locked frequency dividers (ILFDs) and a wide-tuning stacked-transformer feedback voltage-controlled oscillator (VCO) operated in double frequency. A symmetric differential stacked-transformer with a high coupling factor and a high quality factor is used as a feedback component for the wide-tuning VCO design. The wide tuning range, which is greater than three times the desired bandwidth, is achieved by selecting a greater tuning capacitance ratio available from high-voltage N-type accumulation-mode MOS varactors and a smaller self-inductance stacked-transformer. Since the quality factors of the LC-resonator components can sustain at a high enough level, the wide-tuning VCO does not suffer from the phase noise degradation too much. In addition, the tuning range of the local oscillator is extended simultaneously by utilizing switched capacitor arrays (SCAs) in the ILFDs. The circuit is implemented by TSMC's 0.18-µm RF CMOS technology. At a 1-V power supply, the whole integrated circuit dissipates 6.72 mW (4.05 mW for the VCO and 2.67 mW for the two ILFDs). The total tuning range frequency is about 500 MHz (from 5.54 GHz to 6.04 GHz) when the tuning voltage Vtune ranges from 0 V to 1.8 V. At around the output frequency of 5.77 GHz (at Vtune = 0.5 V), the measured phase noise of this local oscillator is -119.4 dBc/Hz at a 1-MHz offset frequency. This work satisfies the specification requirement for IEEE 802.11a UNII-3 band application. The corresponding figure-of-merit (FOM) calculated is 186.3 dB.
Nonlinear distortions in power amplifiers (PAs) generate spectral regrowth at the output, which causes interference to adjacent channels and errors in digitally modulated signals. This paper presents a novel method to evaluate adjacent channel leakage power ratio (ACPR) and error vector magnitude (EVM) from the amplitude-to-amplitude (AM/AM) and amplitude-to-phase (AM/PM) characteristics. The transmitted signal is considered to be complex Gaussian distributed in orthogonal frequency-division multiplexing (OFDM) systems. We use the Mehler formula to derive closed-form expressions of the PAs output power spectral density (PSD), ACPR and EVM for memoryless PA and memory PA respectively. We inspect the derived relationships using an OFDM signal in the IEEE 802.11a WLAN standard. Simulation results show that the proposed method is appropriate to predict the ACPR and EVM values of the nonlinear PA output in OFDM systems, when the AM/AM and AM/PM characteristics are known.
In this letter, DFT-based channel estimation (CE) with a strong interference detector is proposed for OFDM systems. Computer simulations demonstrate that the proposed scheme achieves similar performance to an interference-free system and is a significant enhancement over conventional methods.
Hyun YANG Kwang-Soo JEONG Jae-Hoon YI Young-Hwan YOU
In this letter, we propose an integer carrier frequency offset (IFO) estimator in the presence of symbol timing error for an ultra-wideband multi-band orthogonal frequency division multiplexing (UWB MB-OFDM) system. The proposed IFO estimator uses frequency-domain spreaded data symbol which is provided in the MB-OFDM system. To demonstrate the accuracy of the proposed IFO estimator, comparisons are made with conventional estimators via computer simulation.
Hiromasa FUJII Hitoshi YOSHINO
Employing fractional frequency reuse (FFR) in OFDMA cellular systems is very attractive since it offers large capacity and single cell frequency reuse. However, its performance in practical environments, e.g. scheduling and arbitrary cell configurations, has not been well revealed. This paper analyzes the theoretical capacity and outage rate of an OFDMA cellular system employing FFR. Numerical examples show that FFR achieves higher capacity than the non-FFR equivalent when the outage rate is low.
The bit error rate (BER) performance of multicode multi-carrier code division multiple access (MC-CDMA) severely degrades due to the inter-code interference (ICI) in a strong frequency-selective channel. Recently a spreading code group construction method was proposed for MC-CDMA. The Walsh-Hadmard (WH) codes are divided into a number of code groups such that the code orthogonality can be maintained within each group even in a strong frequency-selective channel; any code pair taken from different groups is not orthogonal. The number of spreading codes in each group is determined by the maximum time delay difference of the channel. In this paper, we point out that the number of codes in each group is determined by the distribution of time delay differences among the propagation paths of the channel, not the maximum time delay difference. Based on that observation, we show that more orthogonal spreading codes can exist in each code group. The conditional BER is derived taking into account the interference from other code groups and the achievable downlink BER performance using the proposed spreading code group construction is numerically evaluated in a frequency-selective Rayleigh fading channel.
Atsushi NAGATE Kenji HOSHINO Teruya FUJII
It is important to improve a cell-edge throughput of next generation mobile communication systems. Frequency reuse schemes such as three-cell reuse or fractional frequency reuse are suitable for achieving this goal. Another candidate is multi-link transmission; signals on different sub-carriers from adjacent base stations are received by a mobile. However, the orthogonality of these signals can collapse if a frequency offset between adjacent base stations is excessive; this loss triggers adjacent-channel interference. This paper proposes an interference canceller to solve this problem and confirms the effectiveness of the method through numerical analysis and computer simulations.