In this paper, we design a practical time-reversal quasi-orthogonal space-time block code (TR-QO-STBC) system for broadband multi-input multi-output (MIMO) communications. We first modify the TR-QO-STBC encoding structure so that the interference between the transmitted blocks can be completely removed by linear processing. Two low complex decision-feedback equalization (DFE) schemes are then proposed. One is built from the frequency-domain decision-feedback equalization (FD-DFE). The derived bi-directive FD-DFE (BiD-FD-DFE) cancels the interference among the successive symbols along the time axis. The other one is the enhanced V-BLAST, which cancels the interference between the real and imaginary parts of the spectral components. They have distinct performance characteristics due to the different interference-cancellation strategies. The underlying orthogonal and symmetric characters of TR-QO-STBC are exploited to reduce the computational complexity. Computer simulations confirm that the proposed equalizers can achieve better performance than the existing schemes.
This paper evaluates the performance of a pilot-assisted fine carrier frequency offset (CFO) estimation scheme for orthogonal frequency division multiplexing (OFDM) in time-varying channels. An analytical closed-form expression of the mean square error (MSE), of the post-FFT based CFO synchronization scheme, is presented in terms of time-variant fading channels. To verify our analysis in this paper, simulations are carried out within the framework of mobile WiMAX systems.
Weile ZHANG Huiming WANG Qinye YIN Wenjie WANG
In this letter, we propose a simple distributed space-frequency code with both timing errors and multiple carrier frequency offsets (CFO) in asynchronous cooperative communications. By employing both the Alamouti coding approach and the transmit repetition diversity technique, full diversity gain can be achieved by the fast symbol-wise maximum likelihood (ML) decoding at the destination node. Analysis and simulations demonstrate the effectiveness of the proposed method.
Weile ZHANG Qinye YIN Wenjie WANG
A novel distributed ranging method for wireless sensor networks (WSN) is proposed in this letter. Linear frequency modulation (LFM) waves are emitted from the two antenna elements equipped at the anchor node simultaneously to create an interference field. Through the frequency measurement of local RSSI (Received Signal Strength Indication) signal, the horizontal distance from the anchor node can be estimated independently at each sensor. Analysis and simulation results demonstrate the effectiveness of our proposed method.
We present an orthogonal frequency division multiple access (OFDMA) based multichannel slotted ALOHA for cognitive radio networks (OMSA-CR). The performance of an infinite population based OMSA-CR system is analyzed in terms of channel capacity, throughput, delay, and packet capture effect. We investigate the channel capacity for OMSA-CR with perfect or imperfect spectrum sensing. We introduce the proposed CR MAC based on two channel selection schemes: non-agile channel selection (NCS) and agile channel selection (ACS). Comparing them, we show the tradeoff between complexity and system performance. We verify the proposed CR system model using numerical analysis. In particular, using simulation with a finite populated linear feedback model, we observe the OMSA-CR MAC tradeoff between throughput and minimum delay whose results matched those of the analytical framework. Numerical results for the proposed system throughput are also compared to conventional MACs, including pure ALOHA based CR MAC.
The multistage noise-shaping (MASH) delta-sigma modulator (DSM) is the key element in a fractional-N frequency synthesizer. A hardware simplification method with subtraction inversion is proposed for delta-path's design in a MASH delta-sigma modulator. The subtraction inversion method focuses on simplification of adder-subtractor unit in the delta path with inversion of subtraction signal. It achieves with less hardware cost as compared with the conventional approaches. As a result, the hardware organization is regular and easy for expanding into higher order MASH DSM design. Analytical details of the implementation way and hardware cost function with N-th order configuration are presented. Finally, simulations with hardware description language as well as synthesis data verified the proposed design method.
One of the major drawbacks of orthogonal frequency division multiplexing (OFDM) systems is their vulnerability to synchronization errors. To remedy the inter-carrier interference (ICI) effect caused by carrier frequency offset (CFO) estimation errors, this paper proposes a weighted linear parallel ICI cancellation (WLPICIC) equalizer. The optimal weights in the WLPICIC scheme are derived in closed-form expressions by maximizing the average signal-to-interference ratio (SIR) at the WLPICIC output of each sub-carrier. The simulation results show that the WLPICIC equalizer significantly improves the performance of OFDM systems with frequency estimation errors in both AWGN channels and frequency selective fading channels.
Yizhen JIA Xiaoming TAO Youzheng WANG Yukui PEI Jianhua LU
Base Station (BS) cooperation has been considered as a promising technology to mitigate co-channel interference (CCI), yielding great capacity improvement in cellular systems. In this paper, by combining frequency domain cooperation and space domain cooperation together, we design a new CCI mitigation scheme to maximize the total utility for a multi-cell OFDMA network. The scheme formulates the CCI mitigation problem as a mixture integer programming problem, which involves a joint user-set-oriented subcarrier assignment and power allocation. A computationally feasible algorithm based on Lagrange dual decomposition is derived to evaluate the optimal value of the problem. Moreover, a low-complexity suboptimal algorithm is also presented. Simulation results show that our scheme outperforms the counterparts incorporating BS cooperation in a single domain considerably, and the proposed low-complexity algorithm achieves near optimal performance.
Fumiyuki ADACHI Kazuki TAKEDA Tatsunori OBARA Tetsuya YAMAMOTO Hiroki MATSUDA
Broadband wireless technology that enables a variety of gigabit-per-second class data services is a requirement in future wireless communication systems. Broadband wireless channels become extremely frequency-selective and cause severe inter-symbol interference (ISI). Furthermore, the average received signal power changes in a random manner because of the shadowing and distance-dependant path losses resulted from the movement of a mobile terminal (MT). Accordingly, the transmission performance severely degrades. To overcome the performance degradation, two most promising approaches are the frequency-domain equalization (FDE) and distributed antenna network (DAN). The former takes advantage of channel frequency-selectivity to obtain the frequency-diversity gain. In DAN, a group of distributed antennas serve each user to mitigate the negative impact of shadowing and path losses. This article will introduce the recent advances in FDE and DAN for the broadband single-carrier (SC) transmissions.
Hye-Kwang KIM Jung-Hoon KIM Eugene RHEE Sung-Il YANG
This paper presents a method of expanding the operating frequency band of a Reverberating TEM Cell (RTC) for electromagnetic compatibility (EMC) testing. To expand the operating frequency band of an RTC, this paper places a wire septum inside the cell instead of a solid septum. The maximum usable frequency (MUF) for TEM cell operation and the lowest usable frequency (LUF) for reverberating chamber operation with the wire septum are studied and compared with a conventional solid septum. The E field strengths inside the RTC are measured and evaluated. The measurement results show that the RTC with the wire septum have similar MUF to the RTC with a solid septum at TEM mode, but have much lower LUF at a reverberating mode, which proves that the operating frequency band of the RTC can be expanded by using the wire septum.
Xianhua NIU Daiyuan PENG Fang LIU Xing LIU
In order to evaluate the goodness of frequency hopping sequence design, the periodic Hamming correlation function is used as an important measure. Usually, the length of correlation window is shorter than the period of the chosen frequency hopping sequence, so the study of the partial Hamming correlation of frequency hopping sequence is particularly important. In this paper, the maximum partial Hamming correlation lower bounds of frequency hopping sequences with low hit zone, with respect to the size of the frequency slot set, the length of correlation window, the family size, the low hit zone, the maximum partial Hamming autocorrelation and the maximum partial Hamming crosscorrelation are established. It is shown that the new bounds include the known Lempel-Greenberger bound, Peng-Fan bounds, Eun-Jin-Hong-Song bound and Peng-Fan-Lee bounds as special cases.
Jin-Ho CHUNG Yun Kyoung HAN Kyeongcheol YANG
In quasi-synchronous frequency-hopping multiple access (QS-FHMA) systems, no-hit-zone frequency-hopping sequence (NHZ-FHS) sets are commonly employed to minimize multiple access interference. Several new constructions for optimal NHZ-FHS sets are presented in this paper, which are based on interleaving techniques. Two types of NHZ-FHS sets of length 2N for any integer N ≥ 3 are constructed, whose NHZ sizes are some even integers. An optimal NHZ-FHS set of length 2N with odd NHZ size for any integer N ≥ 6 is also presented. And then, optimal NHZ-FHS sets of length kN are given by generalizing one of the proposed constructions for NHZ-FHS sets of length 2N, where k and N are any positive integers such that 2 ≤ k < N. All the FHSs in the new NHZ-FHS sets are non-repeating FHSs which are optimal with respect to the Lempel-Greenberger bound. Our constructions give new parameters which are flexible in the selection of NHZ size and set size.
Fang LIU Daiyuan PENG Xiaohu TANG
In frequency-hopping (FH) multiple access systems, frequency-hopping sequences (FHSs) with optimal Hamming correlation properties are needed. Based on the d-form functions with ideal autocorrelation properties, a new set of FHSs is constructed. The new FHS set is optimal with respect to the Peng-Fan bounds and each FHS in the set is optimal with respect to the Lempel-Greenberger bound.
Yue ZHAO Xuming FANG Zhengguang ZHAO
Continuously increasing the bandwidth to enhance the capacity is impractical because of the scarcity of spectrum availability. Fortunately, on the basis of the characteristics of the multihop cellular networks (MCNs), a new compact frequency reuse scheme has been proposed to provide higher spectrum utilization efficiency and larger capacity without increasing the cost on network. Base stations (BSs) and relay stations (RSs) could transmit simultaneously on the same frequency according to the compact frequency reuse scheme. In this situation, however, mobile stations (MSs) near the coverage boundary will suffer serious interference and their traffic quality can hardly be guaranteed. In order to mitigate the interference while maintaining high spectrum utilization efficiency, this paper introduces a fractional frequency reuse (FFR) scheme into multihop cellular networks, in which the principle of FFR scheme and characteristics of frequency resources configurations are described, then the transmission (Tx) power consumption of BS and RSs is analyzed. The proposed scheme can both meet the requirement of high traffic load in future cellular system and maximize the benefit by reducing the Tx power consumption. Numerical results demonstrate that the proposed FFR in compact frequency reuse achieves higher cell coverage probability and larger capacity with respect to the conventional schemes.
Recently, privacy preservation has become one of the key issues in data mining. In many data mining applications, computing frequencies of values or tuples of values in a data set is a fundamental operation repeatedly used. Within the context of privacy preserving data mining, several privacy preserving frequency mining solutions have been proposed. These solutions are crucial steps in many privacy preserving data mining tasks. Each solution was provided for a particular distributed data scenario. In this paper, we consider privacy preserving frequency mining in a so-called 2-part fully distributed setting. In this scenario, the dataset is distributed across a large number of users in which each record is owned by two different users, one user only knows the values for a subset of attributes, while the other knows the values for the remaining attributes. A miner aims to compute the frequencies of values or tuples of values while preserving each user's privacy. Some solutions based on randomization techniques can address this problem, but suffer from the tradeoff between privacy and accuracy. We develop a cryptographic protocol for privacy preserving frequency mining, which ensures each user's privacy without loss of accuracy. The experimental results show that our protocol is efficient as well.
Carrier frequency offset may distort the orthogonality of the subcarriers in OFDM systems and it must be estimated and compensated to maintain the system performance. A blind carrier frequency offset estimator based on the histogram of the received signal's phase is proposed in this letter. The proposed estimator can operate under additive white Gaussian noise and multipath channels without known training signal, redundant guard interval, and virtual carrier. Compared to subspace-based blind estimators, the proposed estimator can provide better mean-square-error performance.
Sarawuth CHAIMOOL Kwok L. CHUNG Prayoot AKKARAEKTHALIN
Bandwidth and gain enhancement of microstrip patch antennas (MPAs) is proposed using reflective metasurface (RMS) as a superstrate. Two different types of the RMS, namely- the double split-ring resonator (DSR) and double closed-ring resonator (DCR) are separately investigated. The two antenna prototypes were manufactured, measured and compared. The experimental results confirm that the RMS loaded MPAs achieve high-gain as well as bandwidth improvement. The desinged antenna using the RMS as a superstrate has a high-gain of over 9.0 dBi and a wide impedance bandwidth of over 13%. The RMS is also utilized to achieve a thin antenna with a cavity height of 6 mm, which is equivalent to λ/21 at the center frequency of 2.45 GHz. At the same time, the cross polarization level and front-to-back ratio of these antennas are also examined.
In this Letter, the maximum likelihood (ML) estimator for the parameters of a real sinusoid in additive white Gaussian noise using irregularly-spaced samples is derived. The ML frequency estimate is first determined by a one-dimensional search, from which optimum amplitude and phase estimates are then computed. It is shown that the estimation performance of the ML method can attain Cramér-Rao lower bound when the signal-to-noise ratio is sufficiently large.
Liang ZHU Yukui PEI Ning GE Jianhua LU
We propose a time-frequency interleave (TFI) structure of single carrier (SC) frequency domain equalization (FDE) to combat spectral nulls of wireless channels. Permuted copies of block data are transmitted in the TFI-FDE, providing the same diversity order as maximal-ratio receiver combining. The spectral nulls are compensated by uncorrelated spectral components of the same channel. It shows 4 dB diversity gains at BER of 10-2 over an indoor channel. The TFI-FDE is computationally-efficient in combination with fast Fourier transform. This TFI-FDE fits SC systems with single antenna. It needs no channel state information at the transmitter.
Hiroki MATSUDA Kazuki TAKEDA Fumiyuki ADACHI
In this paper, joint water filling and maximal ratio transmission (joint WF-MRT) downlink transmit diversity for a single-carrier distributed antenna network (SC DAN) is proposed. The joint WF-MRT transmit weight allocates the transmit power in both transmit antenna dimension and frequency dimension, i.e., the power allocation is done both across frequencies based on WF theorem and across transmit antennas based on MRT strategy. The cumulative distribution function (CDF) of the channel capacity achievable by joint WF-MRT transmit diversity is evaluated by Monte-Carlo numerical computation method. The channel capacities achievable with joint WF-MRT, MRT, and WF transmit weight (WF transmit weight is done across transmit antennas and frequencies based on WF theorem) are compared. It is shown that the joint WF-MRT transmit weight provides the highest channel capacity among three transmit weights.