The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ions(1388hit)

481-500hit(1388hit)

  • Narrow-Wall-Connected Microstrip-to-Waveguide Transition Using V-Shaped Patch Element in Millimeter-Wave Band

    Kazuyuki SEO  Kunio SAKAKIBARA  Nobuyoshi KIKUMA  

     
    PAPER-Antennas

      Vol:
    E93-B No:10
      Page(s):
    2523-2530

    Narrow-wall-connected microstrip-to-waveguide transition using V-shaped patch element in millimeter-wave band is proposed. Since the microstrip line on the narrow-wall is perpendicular to the E-plane of the waveguide, waveguide field does not couple directly to the microstrip line. The current on the V-shaped patch element flows along inclined edges, then current on the V-shaped patch element couples to the microstrip line efficiently. Three types of transitions are investigated. A numerical investigation of these transitions show some relations between bandwidth and insertion loss. It is confirmed that the improved transition exhibits an insertion loss of 0.6 dB from 76 to 77 GHz, and a bandwidth of 4.1% (3.15 GHz) for the reflection coefficient below -15 dB.

  • Theoretical Estimation of Scattering Waves in Transverse Section of Upper Body for On-Body Wireless Communications

    Changyong SEO  Kazuyuki SAITO  Masaharu TAKAHASHI  Koichi ITO  

     
    PAPER-Electromagnetic Analysis

      Vol:
    E93-B No:10
      Page(s):
    2601-2610

    This paper attempts to analyze theoretically the propagation characteristics in the transverse section of upper body to support on-body wireless communications. The analytical estimation assumes that the human body is structured as a lossy-dielectric circular cylinder with infinite length that consists of the 2/3-muscle equivalent uniform tissue. Each scattering electric field formulation inside and outside of the cylinder is derived for scattering characteristics in the propagation environment including the human body when the source current has the vertical direction to the cylinder surface or the horizontal direction to the cylinder axis. In order to confirm the reliability of the formulation, total electric field distributions at 2.45 GHz are compared with the results by the finite-difference time-domain (FDTD) method. In each current direction, general scattering characteristics and the influence on the total propagation are estimated. Furthermore, from scattering and total electric field intensities evaluated with the variations of operating frequency, radius of the human body, and distance between a source and the human body, propagation characteristics are investigated to assist in the design of a device for on-body propagation channel with the upper body.

  • The Design of a Total Ship Service Framework Based on a Ship Area Network

    Daekeun MOON  Kwangil LEE  Hagbae KIM  

     
    LETTER-Dependable Computing

      Vol:
    E93-D No:10
      Page(s):
    2858-2861

    The rapid growth of IT technology has enabled ship navigation and automation systems to gain better functionality and safety. However, they generally have their own proprietary structures and networks, which makes interfacing with and remote access to them difficult. In this paper, we propose a total ship service framework that includes a ship area network to integrate separate system networks with heterogeneity and dynamicity, and a ship-shore communication infrastructure to support a remote monitoring and maintenance service using satellite communications. Finally, we present some ship service systems to demonstrate the applicability of the proposed framework.

  • Power Controlled Concurrent Transmissions in mmWave WPANs

    Yongsun KIM  Meejoung KIM  Wooyong LEE  Chul-Hee KANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E93-B No:10
      Page(s):
    2808-2811

    This letter considers power-controlled transmission from directional antennas in mmWave wireless personal area network (WPAN) systems. The attributes of these systems are studied; these include the number of concurrent transmissions and the power consumption with different system parameters, such as the antenna's beamwidth and radiating efficiency. Numerical results are presented to show that the power controlled transmission enables more concurrent transmissions than the non-power controlled transmission. The results also show that the number of concurrent transmissions increases as the beamwidth and the path loss component become smaller and the antenna's radiating efficiency increases. In addition, the power controlled system generally uses less power than the non-power controlled transmission set up; the overall analysis is verified by simulation.

  • Reliable Wireless Broadcast with Linear Network Coding for Multipoint-to-Multipoint Real-Time Communications

    Yoshihisa KONDO  Hiroyuki YOMO  Shinji YAMAGUCHI  Peter DAVIS  Ryu MIURA  Sadao OBANA  Seiichi SAMPEI  

     
    PAPER-Network

      Vol:
    E93-B No:9
      Page(s):
    2316-2325

    This paper proposes multipoint-to-multipoint (MPtoMP) real-time broadcast transmission using network coding for ad-hoc networks like video game networks. We aim to achieve highly reliable MPtoMP broadcasting using IEEE 802.11 media access control (MAC) that does not include a retransmission mechanism. When each node detects packets from the other nodes in a sequence, the correctly detected packets are network-encoded, and the encoded packet is broadcasted in the next sequence as a piggy-back for its native packet. To prevent increase of overhead in each packet due to piggy-back packet transmission, network coding vector for each node is exchanged between all nodes in the negotiation phase. Each user keeps using the same coding vector generated in the negotiation phase, and only coding information that represents which user signal is included in the network coding process is transmitted along with the piggy-back packet. Our simulation results show that the proposed method can provide higher reliability than other schemes using multi point relay (MPR) or redundant transmissions such as forward error correction (FEC). We also implement the proposed method in a wireless testbed, and show that the proposed method achieves high reliability in a real-world environment with a practical degree of complexity when installed on current wireless devices.

  • A Parallel Transmission Scheme for All-to-All Broadcast in Underwater Sensor Networks

    Soonchul PARK  Jaesung LIM  

     
    PAPER-Network

      Vol:
    E93-B No:9
      Page(s):
    2309-2315

    This paper is concerned with the packet transmission scheduling problem for repeating all-to-all broadcasts in Underwater Sensor Networks (USN) in which there are n nodes in a transmission range. All-to-all communication is one of the most dense communication patterns. It is assumed that each node has the same size packet. Unlike the terrestrial scenarios, the propagation time in underwater communications is not negligible. We define all-to-all broadcast as the one where every node transmits packets to all the other nodes in the network except itself. So, there are in total n(n - 1) packets to be transmitted for an all-to-all broadcast. The optimal transmission scheduling is to schedule in a way that all packets can be transmitted within the minimum time. In this paper, we propose an efficient packet transmission scheduling algorithm for underwater acoustic communications using the property of long propagation delay.

  • Computing Spatio-Temporal Multiple View Geometry from Mutual Projections of Multiple Cameras

    Cheng WAN  Jun SATO  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E93-D No:9
      Page(s):
    2602-2613

    The spatio-temporal multiple view geometry can represent the geometry of multiple images in the case where non-rigid arbitrary motions are viewed from multiple translational cameras. However, it requires many corresponding points and is sensitive to the image noise. In this paper, we investigate mutual projections of cameras in four-dimensional space and show that it enables us to reduce the number of corresponding points required for computing the spatio-temporal multiple view geometry. Surprisingly, take three views for instance, we no longer need any corresponding point to calculate the spatio-temporal multiple view geometry, if all the cameras are projected to the other cameras mutually for two time intervals. We also show that the stability of the computation of spatio-temporal multiple view geometry is drastically improved by considering the mutual projections of cameras.

  • A Systematic Design Method for Two-Variable Numeric Function Generators Using Multiple-Valued Decision Diagrams

    Shinobu NAGAYAMA  Tsutomu SASAO  Jon T. BUTLER  

     
    PAPER-Logic Design

      Vol:
    E93-D No:8
      Page(s):
    2059-2067

    This paper proposes a high-speed architecture to realize two-variable numeric functions. It represents the given function as an edge-valued multiple-valued decision diagram (EVMDD), and shows a systematic design method based on the EVMDD. To achieve a design, we characterize a numeric function f by the values of l and p for which f is an l-restricted Mp-monotone increasing function. Here, l is a measure of subfunctions of f and p is a measure of the rate at which f increases with an increase in the dependent variable. For the special case of an EVMDD, the EVBDD, we show an upper bound on the number of nodes needed to realize an l-restricted Mp-monotone increasing function. Experimental results show that all of the two-variable numeric functions considered in this paper can be converted into an l-restricted Mp-monotone increasing function with p=1 or 3. Thus, they can be compactly realized by EVBDDs. Since EVMDDs have shorter paths and smaller memory size than EVBDDs, EVMDDs can produce fast and compact NFGs.

  • Opportunistic Resource Scheduling for a Wireless Network with Relay Stations

    Jeong-Ahn KWON  Jang-Won LEE  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E93-B No:8
      Page(s):
    2097-2103

    In this paper, we study an opportunistic scheduling scheme for the TDMA wireless network with relay stations. We model the time-varying channel condition of a wireless link as a stochastic process. Based on this model, we formulate an optimization problem for the opportunistic scheduling scheme that maximizes the expected system throughput while satisfying the QoS constraint of each user. In the opportunistic scheduling scheme for the system without relay stations, each user has only one communication path between the base station and itself, and thus only user selection is considered. However, in our opportunistic scheduling scheme for the system with relay stations, since there may exist multiple paths between the base station and a user, not only user selection but also path selection for the scheduled user is considered. In addition, we also propose an opportunistic time-sharing method for time-slot sharing between base station and relay stations. With the opportunistic time-sharing method, our opportunistic scheduling provides opportunistic resource sharing in three places in the system: user selection in a time-slot, path selection for the selected user, and time-slot sharing between base station and relay stations. Simulation results show that as the number of places that opportunistic resource sharing is applied to increases, the performance improvement also increases.

  • BER Analysis of Multi-Hop Decode-and-Forward Relaying with Generalized Selection Combining

    Vo-Nguyen Quoc BAO  Hyung-Yun KONG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E93-B No:7
      Page(s):
    1943-1947

    Generalized selection combining (GSC) was recently proposed as a low-complexity diversity combining technique for diversity-rich environments. This letter proposes a multi-hop Decode-and-Forward Relaying (MDFR) scheme in conjunction with GSC and describes its performance in terms of average bit error probability. We have shown that the proposed protocol offers a remarkable diversity advantage over direct transmission as well as the conventional decode-and-forward relaying (CDFR) scheme. Simulation results are also given to verify the analytical results.

  • A Novel Predistorter Design for Nonlinear Power Amplifier with Memory Effects in OFDM Communication Systems Using Orthogonal Polynomials

    Yitao ZHANG  Kiyomichi ARAKI  

     
    PAPER

      Vol:
    E93-C No:7
      Page(s):
    983-990

    Orthogonal frequency division multiplexing (OFDM) signals have high peak-to-average power ratio (PAPR) and cause large nonlinear distortions in power amplifiers (PAs). Memory effects in PAs also become no longer ignorable for the wide bandwidth of OFDM signals. Digital baseband predistorter is a highly efficient technique to compensate the nonlinear distortions. But it usually has many parameters and takes long time to converge. This paper presents a novel predistorter design using a set of orthogonal polynomials to increase the convergence speed and the compensation quality. Because OFDM signals are approximately complex Gaussian distributed, the complex Hermite polynomials which have a closed-form expression can be used as a set of orthogonal polynomials for OFDM signals. A differential envelope model is adopted in the predistorter design to compensate nonlinear PAs with memory effects. This model is superior to other predistorter models in parameter number to calculate. We inspect the proposed predistorter performance by using an OFDM signal referred to the IEEE 802.11a WLAN standard. Simulation results show that the proposed predistorter is efficient in compensating memory PAs. It is also demonstrated that the proposal acquires a faster convergence speed and a better compensation effect than conventional predistorters.

  • Upper Bound and Dispersion of the Outdoor Powerline Channel Frequency-Response

    Flavia GRASSI  Sergio A. PIGNARI  

     
    PAPER-Communication System EMC, Power System EMC

      Vol:
    E93-B No:7
      Page(s):
    1814-1820

    In this paper, multiconductor transmission line (MTL) modelling is used to characterize the frequency response and dispersion of the low-voltage outdoor powerline channel. The analysis focuses on a single transmitter-to-receiver link and all the possible connection schemes associated with that link. By resorting to modal analysis, approximate analytical upper bounds of the channel frequency-response are derived for simplified but representative network configurations involving power cables with star-quad cross-section. Numerical solution of the MTL equations is used to validate the theoretical work and to show the dispersion of the channel frequency-responses, which results to be of the order of 20 dB.

  • IP-MAC: A Distributed MAC for Spatial Reuse in Wireless Networks

    Md. Mustafizur RAHMAN  Choong Seon HONG  Sungwon LEE  JangYeon LEE  Jin Woong CHO  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E93-B No:6
      Page(s):
    1534-1546

    The CSMA/CA driven MAC protocols withhold packet transmissions from exposed stations when they detect carrier signal above a certain threshold. This is to avoid collisions at other receiving stations. However, this conservative scheme often exposes many stations unnecessarily, and thus minimizes the utilization of the spatial spectral resource. In this paper, we demonstrate that remote estimation of the status at the active receivers is more effective at avoiding collisions in wireless networks than the carrier sensing. We apply a new concept of the interference range, named as n-tolerant interference range, to guarantee reliable communications in the presence of n (n≥ 0) concurrent transmissions from outside the range. We design a distributed interference preventive MAC ( IP-MAC ) using the n-tolerant interference range that enables parallel accesses from the noninterfering stations for an active communication. In IP-MAC, an exposed station goes through an Interference Potentiality Check (IPC) to resolve whether it is potentially interfering or noninterfering to the active communication. During the resolve operation, IPC takes the capture effect at an active receiver into account with interfering signals from a number of possible concurrent transmissions near that receiver. The performance enhancement offered by IP-MAC is studied via simulations in different environments. Results reveal that IP-MAC significantly improves network performance in terms of throughput and delay.

  • Question Answering for the Operation of Software Applications: A Document Retrieval Approach

    Atsushi FUJII  Seiji TAKEGATA  

     
    PAPER-Natural Language Processing

      Vol:
    E93-D No:6
      Page(s):
    1369-1377

    Reflecting the rapid growth of information technology, the configuration of software applications such as word processors and spreadsheets is both sophisticated and complicated. It is often difficult for users to identify relevant functions in the online manual for a target application. In this paper, we propose a method for question answering that finds functions related to the user's request. To enhance our method, we addressed two "mismatch" problems. The first problem is associated with a mismatch in vocabulary, where the same concept is represented by different words in the manual and in the user's question. The second problem is associated with a mismatch in function. Although the user may have a hypothetical function for a purpose in mind, this purpose can sometimes be accomplished by other functions. To resolve these mismatch problems, we extract terms related to software functions from the Web, so that the user's question can be matched to the relevant function with high accuracy. We demonstrate the effectiveness of our method experimentally.

  • Efficient Analyzing General Dominant Relationship Based on Partial Order Models

    Zhenglu YANG  Lin LI  Masaru KITSUREGAWA  

     
    PAPER-Information Retrieval

      Vol:
    E93-D No:6
      Page(s):
    1394-1402

    Skyline query is very important because it is the basis of many applications, e.g., decision making, user-preference queries. Given an N-dimensional dataset D, a point p is said to dominate another point q if p is better than q in at least one dimension and equal to or better than q in the remaining dimensions. In this paper, we study a generalized problem of skyline query that, users are more interested in the details of the dominant relationship in a dataset, i.e., a point p dominates how many other points and whom they are. We show that the existing framework proposed in can not efficiently solve this problem. We find the interrelated connection between the partial order and the dominant relationship. Based on this discovery, we propose a new data structure, ParCube, which concisely represents the dominant relationship. We propose some effective strategies to construct ParCube. Extensive experiments illustrate the efficiency of our methods.

  • Predicting Analog Circuit Performance Based on Importance of Uncertainties

    Jin SUN  Kiran POTLURI  Janet M. WANG  

     
    PAPER-Electronic Circuits

      Vol:
    E93-C No:6
      Page(s):
    893-904

    With the scaling down of CMOS devices, process variation is becoming the leading cause of CMOS based analog circuit failures. For example, a mere 5% variation in feature size can trigger circuit failure. Various methods such as Monte-Carlo and corner-based verification help predict variation caused problems at the expense of thousands of simulations before capturing the problem. This paper presents a new methodology for analog circuit performance prediction. The new method first applies statistical uncertainty analysis on all associated devices in the circuit. By evaluating the uncertainty importance of parameter variability, it approximates the circuit with only components that are most critical to output results. Applying Chebyshev Affine Arithmetic (CAA) on the resulting system provides both performance bounds and probability information in time domain and frequency domain.

  • Stochastic Sparse-Grid Collocation Algorithm for Steady-State Analysis of Nonlinear System with Process Variations

    Jun TAO  Xuan ZENG  Wei CAI  Yangfeng SU  Dian ZHOU  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E93-A No:6
      Page(s):
    1204-1214

    In this paper, a Stochastic Collocation Algorithm combined with Sparse Grid technique (SSCA) is proposed to deal with the periodic steady-state analysis for nonlinear systems with process variations. Compared to the existing approaches, SSCA has several considerable merits. Firstly, compared with the moment-matching parameterized model order reduction (PMOR) which equally treats the circuit response on process variables and frequency parameter by Taylor approximation, SSCA employs Homogeneous Chaos to capture the impact of process variations with exponential convergence rate and adopts Fourier series or Wavelet Bases to model the steady-state behavior in time domain. Secondly, contrary to Stochastic Galerkin Algorithm (SGA), which is efficient for stochastic linear system analysis, the complexity of SSCA is much smaller than that of SGA for nonlinear case. Thirdly, different from Efficient Collocation Method, the heuristic approach which may result in "Rank deficient problem" and "Runge phenomenon," Sparse Grid technique is developed to select the collocation points needed in SSCA in order to reduce the complexity while guaranteing the approximation accuracy. Furthermore, though SSCA is proposed for the stochastic nonlinear steady-state analysis, it can be applied to any other kind of nonlinear system simulation with process variations, such as transient analysis, etc.

  • Analysis of the Rate-Based Channel Access Prioritization for Drive-Thru Applications in the IEEE 802.11p WAVE

    Inhye KANG  Hyogon KIM  

     
    LETTER-Network

      Vol:
    E93-B No:6
      Page(s):
    1605-1607

    In this letter, we develop an analytical model for the drive-thru applications based on the IEEE 802.11p WAVE. The model shows that prioritizing the bitrates via the 802.11e EDCA mechanism leads to significant throughput improvement.

  • A Signal Detection Circuit for 8b/10b 2.5 Gb/s Serial Data Communication System in 90 nm CMOS

    Kozue SASAKI  Hiroki SATO  Akira HYOGO  Keitaro SEKINE  

     
    BRIEF PAPER

      Vol:
    E93-C No:6
      Page(s):
    864-866

    This paper presents a CMOS signal detection circuit for 2.5 Gb/s serial data communication system over FR-4 backplane. This overcomes characteristics deviation of full-wave rectifier-based simple power detection circuits due to data pattern and temperature by using an edge detector and a sample-hold circuit.

  • A Novel Turbo Coded Modulation Scheme for Deep Space Optical Communications

    Sangmok OH  Inho HWANG  Adrish BANERJEE  Jeong Woo LEE  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E93-B No:5
      Page(s):
    1260-1263

    A novel turbo coded modulation scheme, called the turbo-APPM, for deep space optical communications is proposed. The proposed turbo-APPM is a serial concatenation of turbo codes, an accumulator and a pulse position modulation (PPM), where turbo codes act as an outer code while the accumulator and the PPM act together as an inner code. The generator polynomial and the puncturing rule for generating turbo codes are chosen to lower the bit error rate. At the receiver, the joint iterative decoding is performed between the inner decoder and the outer turbo decoder. In the outer decoder, local iterative decoding for turbo codes is conducted. Simulation results are presented showing that the proposed turbo-APPM outperforms all previously proposed schemes such as LDPC-APPM, RS-PPM and SCPPM reported in the literature.

481-500hit(1388hit)