The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] measurements(41hit)

1-20hit(41hit)

  • Highly Accurate Vegetation Loss Model with Seasonal Characteristics for High-Altitude Platform Station Open Access

    Hideki OMOTE  Akihiro SATO  Sho KIMURA  Shoma TANAKA  HoYu LIN  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2022/04/13
      Vol:
    E105-B No:10
      Page(s):
    1209-1218

    High-Altitude Platform Station (HAPS) provides communication services from an altitude of 20km via a stratospheric platform such as a balloon, solar-powered airship, or other aircraft, and is attracting much attention as a new mobile communication platform for ultra-wide coverage areas and disaster-resilient networks. HAPS can provide mobile communication services directly to the existing smartphones commonly used in terrestrial mobile communication networks such as Fourth Generation Long Term Evolution (4G LTE), and in the near future, Fifth Generation New Radio (5G NR). In order to design efficient HAPS-based cell configurations, we need a radio wave propagation model that takes into consideration factors such as terrain, vegetation, urban areas, suburban areas, and building entry loss. In this paper, we propose a new vegetation loss model for Recommendation ITU-R P.833-9 that can take transmission frequency and seasonal characteristics into consideration. It is based on measurements and analyses of the vegetation loss of deciduous trees in different seasons in Japan. Also, we carried out actual stratospheric measurements in the 700MHz band in Kenya to extend the lower frequency limit. Because the measured results show good agreement with the results predicted by the new vegetation loss model, the model is sufficiently valid in various areas including actual HAPS usage.

  • Propagation Loss Model with Human Body Shielding for High-Altitude Platform Station Communications

    Hideki OMOTE  Akihiro SATO  Sho KIMURA  Shoma TANAKA  HoYu LIN  Takashi HIKAGE  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2022/04/11
      Vol:
    E105-B No:10
      Page(s):
    1219-1230

    In recent years, High-Altitude Platform Station (HAPS) has become the most interesting topic for next generation mobile communication systems, because platforms such as Unmanned Aerial Vehicles (UAVs), balloons, airships can provide ultra-wide coverage, up to 200km in diameter, from altitudes of around 20 km. It also offers resiliency to damage caused by disasters and so ensures the stability and reliability of mobile communications. In order to further integrate HAPS with existing terrestrial mobile communication networks in providing mobile services to users, radio wave propagation models such as terrain, vegetation loss, human shielding loss, building entry loss, urban/suburban areas must be taken into consideration when designing HAPS-based cell configurations. This paper proposes a human body shielding propagation loss model that considers the basic signal attenuation by the human body at high elevation angles. It also analyzes the effect of changes in actual urban/suburban environments due to the arrival of multipath radio waves for HAPS communications in the frequency range of 0.7 to 3.3GHz. Measurements in actual urban/rural environments in Japan and actual stratospheric base station measurements in Kenya are carried out to confirm the validity of the proposed model. Since the measured results agree well with the results predicted by the proposed model, the model is good enough to provide estimates of human loss in various environments.

  • Perceptual Distributed Compressive Video Sensing via Reweighted Sampling and Rate-Distortion Optimized Measurements Allocation

    Jin XU  Yan ZHANG  Zhizhong FU  Ning ZHOU  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2017/01/06
      Vol:
    E100-D No:4
      Page(s):
    918-922

    Distributed compressive video sensing (DCVS) is a new paradigm for low-complexity video compression. To achieve the highest possible perceptual coding performance under the measurements budget constraint, we propose a perceptual optimized DCVS codec by jointly exploiting the reweighted sampling and rate-distortion optimized measurements allocation technologies. A visual saliency modulated just-noticeable distortion (VS-JND) profile is first developed based on the side information (SI) at the decoder side. Then the estimated correlation noise (CN) between each non-key frame and its SI is suppressed by the VS-JND. Subsequently, the suppressed CN is utilized to determine the weighting matrix for the reweighted sampling as well as to design a perceptual rate-distortion optimization model to calculate the optimal measurements allocation for each non-key frame. Experimental results indicate that the proposed DCVS codec outperforms the other existing DCVS codecs in term of both the objective and subjective performance.

  • Low Cost, High Performance of Coplanar Waveguide Fabricated by Screen Printing Technology Open Access

    Masahiro HORIBE  

     
    INVITED PAPER

      Vol:
    E99-C No:10
      Page(s):
    1094-1099

    This paper presents an innovative fabrication process for a planar circuits at millimeter-wave frequency. Screen printing technology provides low cost and high performance coplanar waveguides (CPW) lines in planar devices operated at millimeter-wave frequency up to 110GHz. Printed transmission lines provide low insertion losses of 0.30dB/mm at 110GHz and small return loss like as impedance standard lines. In the paper, Multiline Thru-Reflect-Line (TRL) calibration was also demonstrated by using the impedance standard substrates (ISS) fabricated by screen printing. Regarding calibration capability validation, verification devices were measured and compare the results to the result obtained by the TRL calibration using commercial ISS. The comparison results obtained by calibration of screen printing ISS are almost the same as results measured based on conventional ISS technology.

  • Dynamic Measurements of Intrabody Communication Channels and Their Dependences on Grounding Conditions

    Nozomi HAGA  Yusaku KASAHARA  Kuniyuki MOTOJIMA  

     
    PAPER-Antennas and Propagation

      Vol:
    E99-B No:6
      Page(s):
    1380-1385

    In the development of intrabody communication systems, it is important to understand the effects of user's posture on the communication channels. In this study, dynamic measurements of intrabody communication channels were made and their dependences on the grounding conditions were investigated. Furthermore, the physical mechanism of the dynamic communication channels was discussed based on electrostatic simulations. According to the measured and the simulated results, the variations in the signal transmission characteristics depend not only on the distance between the Tx and the Rx but also on the shadowing by body parts.

  • Adaptive Perceptual Block Compressive Sensing for Image Compression

    Jin XU  Yuansong QIAO  Zhizhong FU  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2016/03/09
      Vol:
    E99-D No:6
      Page(s):
    1702-1706

    Because the perceptual compressive sensing framework can achieve a much better performance than the legacy compressive sensing framework, it is very promising for the compressive sensing based image compression system. In this paper, we propose an innovative adaptive perceptual block compressive sensing scheme. Firstly, a new block-based statistical metric which can more appropriately measure each block's sparsity and perceptual sensibility is devised. Then, the approximated theoretical minimum measurement number for each block is derived from the new block-based metric and used as weight for adaptive measurements allocation. The obtained experimental results show that our scheme can significantly enhance both objective and subjective performance of a perceptual compressive sensing framework.

  • Rate-Distortion Optimized Distributed Compressive Video Sensing

    Jin XU  Yuansong QIAO  Quan WEN  

     
    LETTER-Multimedia Environment Technology

      Vol:
    E99-A No:6
      Page(s):
    1272-1276

    Distributed compressive video sensing (DCVS) is an emerging low-complexity video coding framework which integrates the merits of distributed video coding (DVC) and compressive sensing (CS). In this paper, we propose a novel rate-distortion optimized DCVS codec, which takes advantage of a rate-distortion optimization (RDO) model based on the estimated correlation noise (CN) between a non-key frame and its side information (SI) to determine the optimal measurements allocation for the non-key frame. Because the actual CN can be more accurately recovered by our DCVS codec, it leads to more faithful reconstruction of the non-key frames by adding the recovered CN to the SI. The experimental results reveal that our DCVS codec significantly outperforms the legacy DCVS codecs in terms of both objective and subjective performance.

  • Dosimetry and Verification for 6-GHz Whole-Body Non-Constraint Exposure of Rats Using Reverberation Chamber

    Jingjing SHI  Jerdvisanop CHAKAROTHAI  Jianqing WANG  Kanako WAKE  Soichi WATANABE  Osamu FUJIWARA  

     
    PAPER

      Vol:
    E98-B No:7
      Page(s):
    1164-1172

    With the rapid increase of various uses of wireless communications in modern life, the high microwave and millimeter wave frequency bands are attracting much attention. However, the existing databases on above 6GHz radio-frequency (RF) electromagnetic (EM) field exposure of biological bodies are obviously insufficient. An in-vivo research project on local and whole-body exposure of rats to RF-EM fields above 6GHz was started in Japan in 2013. This study aims to perform a dosimetric design for the whole-body-average specific absorption rates (WBA-SARs) of unconstrained rats exposed to 6GHz RF-EM fields in a reverberation chamber (RC). The required input power into the RC is clarified using a two-step evaluation method in order to achieve a target exposure level in rats. The two-step method, which incorporates the finite-difference time-domain (FDTD) numerical solutions with electric field measurements in an RC exposure system, is used as an evaluation method to determine the whole-body exposure level in the rats. In order to verify the validity of the two-step method, we use S-parameter measurements inside the RC to experimentally derive the WBA-SARs with rat-equivalent phantoms and then compare those with the FDTD-calculated ones. It was shown that the difference between the two-step method and the S-parameter measurements is within 1.63dB, which reveals the validity and usefulness of the two-step technique.

  • Perception of Image Characteristics with Compressive Measurements

    Jie GUO  Bin SONG  Fang TIAN  Haixiao LIU  Hao QIN  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2014/09/22
      Vol:
    E97-D No:12
      Page(s):
    3234-3235

    For compressed sensing, to address problems which do not involve reconstruction, a correlation analysis between measurements and the transform coefficients is proposed. It is shown that there is a linear relationship between them, which indicates that we can abstract the inner property of images directly in the measurement domain.

  • SegOMP: Sparse Recovery with Fewer Measurements

    Li ZENG  Xiongwei ZHANG  Liang CHEN  Weiwei YANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E97-A No:3
      Page(s):
    862-864

    Presented is a new measuring and reconstruction framework of Compressed Sensing (CS), aiming at reducing the measurements required to ensure faithful reconstruction. A sparse vector is segmented into sparser vectors. These new ones are then randomly sensed. For recovery, we reconstruct these vectors individually and assemble them to obtain the original signal. We show that the proposed scheme, referred to as SegOMP, yields higher probability of exact recovery in theory. It is finished with much smaller number of measurements to achieve a same reconstruction quality when compared to the canonical greedy algorithms. Extensive experiments verify the validity of the SegOMP and demonstrate its potentials.

  • Spectrum Usage in Cognitive Radio Networks: From Field Measurements to Empirical Models Open Access

    Miguel LÓPEZ-BENÍTEZ  Fernando CASADEVALL  

     
    INVITED PAPER

      Vol:
    E97-B No:2
      Page(s):
    242-250

    Cognitive Radio (CR) is aimed at increasing the efficiency of spectrum utilization by allowing unlicensed users to access, in an opportunistic and non-interfering manner, some licensed bands temporarily and/or spatially unoccupied by the licensed users. The analysis of CR systems usually requires the spectral activity of the licensed system to be represented and characterized in a simple and tractable, yet accurate manner, which is accomplished by means of spectrum models. In order to guarantee the realism and accuracy of such models, the use of empirical spectrum occupancy data is essential. In this context, this paper explains the complete process of spectrum modeling, from the realization of field measurements to the obtainment of the final validated model, and highlights the main relevant aspects to be taken into account when developing spectrum usage models for their application in the context of the CR technology.

  • Noncontact PIM Measurement Method Using Partial Impedance-Matching Method

    Kensuke SAITO  Daijiro ISHIBASHI  Nobuhiro KUGA  

     
    BRIEF PAPER

      Vol:
    E96-C No:9
      Page(s):
    1151-1154

    In this letter, we propose a partial impedance-matching method using a two-strip resonator for noncontact Passive Intermodulation (PIM) measurements using a coaxial tube. It is shown that the strip closer to the inner tube of the coaxial tube is dominant in the observed PIM characteristics while both strips are excited equally. The ideal efficiency of power to each strip is 50%, which is a significant improvement in comparison with conventional methods.

  • Energy Detection Based Estimation of Channel Occupancy Rate with Adaptive Noise Estimation

    Janne J. LEHTOMAKI  Risto VUOHTONIEMI  Kenta UMEBAYASHI  Juha-Pekka MAKELA  

     
    PAPER

      Vol:
    E95-B No:4
      Page(s):
    1076-1084

    Recently, there has been growing interest in opportunistically utilizing the 2.4 GHz ISM-band. Numerous spectrum occupancy measurements covering the ISM-band have been performed to analyze the spectrum usage. However, in these campaigns the verification of the correctness of the obtained occupancy values for the highly dynamic ISM-band has not been presented. In this paper, we propose and verify channel occupancy rate (COR) estimation utilizing energy detection mechanism with a novel adaptive energy detection threshold setting method. The results are compared with the true reference COR values. Several different types of verification measurements showed that our setup can estimate the COR values of 802.11 traffic well, with negligible overestimation. The results from real-time real-life measurements also confirm that the proposed adaptive threshold setting method enables accurate thresholds even in the situations where multiple interferers are present in the received signal.

  • Development of a 100 GHz Grooved Circular Empty Cavity for Complex Permittivity Measurements in W Band

    Takashi SHIMIZU  Yuki KAWAHARA  Seizo AKASAKA  Yoshinori KOGAMI  

     
    PAPER-Measurement Techniques

      Vol:
    E94-C No:10
      Page(s):
    1650-1656

    A 100 GHz grooved circular empty cavity is proposed for the low loss dielectric substrate measurements by the cut-off circular waveguide method in W band. The influence of the excitation holes for the coaxial cable with a small loop are revealed by an FEM based 3D electromagnetic simulator. And also, the diameter of the excitation hole is determined based on the calculated results and the manufacturing accuracy. Then, two kinds of four 100 GHz grooved circular empty cavities are fabricated. Comparative experiments of the cavities with the different excitation holes validate the simulated results. Moreover, the complex permittivity of a PTFE plate is measured using the fabricated four cavities by the cut-off circular waveguide method around 84 GHz. The measured results agree within measurement error about 0.5% for εr and 5% for tanδ. Also, these results accord with results measured by the Whispering-Gallery mode resonator method in 85–110 GHz band. It verifies that the proposed 100 GHz cavity for the cut-off waveguide method is useful for the complex permittivity measurement of low loss dielectric substrates in W band.

  • Characterization of Mg Diffusion into HfO2/SiO2/Si(100) Stacked Structures and Its Impact on Detect State Densities

    Akio OHTA  Daisuke KANME  Hideki MURAKAMI  Seiichiro HIGASHI  Seiichi MIYAZAKI  

     
    PAPER

      Vol:
    E94-C No:5
      Page(s):
    717-723

    A stacked structure consisting of ∼ 1 nm-thick MgO and ∼ 4 nm-thick HfO2 was formed on thermally grown SiO2/Si(100) by MOCVD using dipivaloymethanato (DPM) precursors, and the influences of N2 anneal on interfacial reaction and defect state density in this stacked structure were examined. The chemical bonding features of Mg atom were evaluated by using an Auger parameter independently of positive charge-up during XPS measurements. With Mg incorporation into HfO2, a slight decrease in the oxidation number of Mg was detectable. The result suggests that Mg atoms are incorporated preferentially near oxygen vacancies in the HfO2, which can be responsible for a reduction of the flat band voltage shifts observed from C-V characteristics.

  • Estimation of Blood Pressure Measurements for Hypertension Diagnosis Using Oscillometric Method

    Youngsuk SHIN  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E94-A No:2
      Page(s):
    806-812

    Blood pressure is the measurement of the force exerted by blood against the walls of the arteries. Hypertension is a major risk factor of cardiovascular diseases. The systolic and diastolic blood pressures obtained from the oscillometric method could carry clues about hypertension. However, blood pressure is influenced by individual traits such as physiology, the geometry of the heart, body figure, gender and age. Therefore, consideration of individual traits is a requisite for reliable hypertension monitoring. The oscillation waveforms extracted from the cuff pressure reflect individual traits in terms of oscillation patterns that vary in size and amplitude over time. Thus, uniform features for individual traits from the oscillation patterns were extracted, and they were applied to evaluate systolic and diastolic blood pressures using two feedforward neural networks. The measurements of systolic and diastolic blood pressures from two neural networks were compared with the average values of systolic and diastolic blood pressures obtained by two nurses using the auscultatory method. The recognition performance was based on the difference between the blood pressures measured by the auscultation method and the proposed method with two neural networks. The recognition performance for systolic blood pressure was found to be 98.2% for 20 mmHg, 93.5% for 15 mmHg, and 82.3% for 10 mmHg, based on maximum negative amplitude. The recognition performance for diastolic blood pressure was found to be 100% for 20 mmHg, 98.8% for 15 mmHg, and 88.2% for 10 mmHg based on maximum positive amplitude. In our results, systolic blood pressure showed more fluctuation than diastolic blood pressure in terms of individual traits, and subjects with prehypertension or hypertension (systolic blood pressure) showed a stronger steep-slope pattern in 1/3 section of the feature windows than normal subjects. The other side, subjects with prehypertension or hypertension (diastolic blood pressure) showed a steep-slope pattern in front of the feature windows (2/3 section) than normal subjects. This paper presented a novel blood pressure measurement system that can monitor hypertension using personalized traits. Our study can serve as a foundation for reliable hypertension diagnosis and management based on consideration of individual traits.

  • Polarization and Spatial Statistics of Wideband MIMO Relay Channels in Urban Environment at 2.35 GHz

    Xin NIE  Jianhua ZHANG  Ping ZHANG  

     
    PAPER-Antennas and Propagation

      Vol:
    E94-B No:1
      Page(s):
    139-149

    Relay, which promises to enhance the performance of future communication networks, is one of the most promising techniques for IMT-Advanced systems. In this paper, multiple-input multiple-output (MIMO) relay channels based on outdoor measurements are investigated. We focus on the link between the base station (BS) and the relay station (RS) as well as the link between the RS and the mobile station (MS). First of all, the channels were measured employing a real-time channel sounder in IMT-Advanced frequency band (2.35 GHz with 50 MHz bandwidth). Then, the parameters of multipath components (MPCs) are extracted utilizing space-alternating generalized expectation algorithm. MPC parameters of the two links are statistically analyzed and compared. The polarization and spatial statistics are gotten. The trends of power azimuth spectrum (PAS) and cross-polarization discrimination (XPD) with the separation between the RS and the MS are investigated. Based on the PAS, the propagation mechanisms of line-of-sight and non-line-of-sight scenarios are analyzed. Furthermore, an approximate closed-form expression of channel correlation is derived. The impacts of PAS and XPD on the channel correlation are studied. Finally, some guidelines for the antenna configurations of the BS, the RS and the MS are presented. The results reveal the different characteristics of relay channels and provide the basis for the practical deployment of relay systems.

  • Image and Video Quality Assessment Using LCD: Comparisons with CRT Conditions

    Sylvain TOURANCHEAU  Patrick LE CALLET  Dominique BARBA  

     
    INVITED PAPER

      Vol:
    E91-A No:6
      Page(s):
    1383-1391

    In this paper, the impact of display on quality assessment is addressed. Subjective quality assessment experiments have been performed on both LCD and CRT displays. Two sets of still images and two sets of moving pictures have been assessed using either an ACR or a SAMVIQ protocol. Altogether, eight experiments have been led. Results are presented and discussed, some differences are pointed out. Concerning moving pictures, these differences seem to be mainly due to LCD moving artefacts such as motion blur. LCD motion blur has been measured objectively and with psycho-physics experiments. A motion-blur metric based on the temporal characteristics of LCD can be defined. A prediction model have been then designed which predict the differences of perceived quality between CRT and LCD. This motion-blur-based model enables the estimation of perceived quality on LCD with respect to the perceived quality on CRT. Technical solutions to LCD motion blur can thus be evaluated on natural contents by this mean.

  • Fuzzy Rule Extraction from Dynamic Data for Voltage Risk Identification

    Chen-Sung CHANG  

     
    PAPER-Artificial Intelligence and Cognitive Science

      Vol:
    E91-D No:2
      Page(s):
    277-285

    This paper presents a methodology for performing on-line voltage risk identification (VRI) in power supply networks using hyperrectangular composite neural networks (HRCNNs) and synchronized phasor measurements. The FHRCNN presented in this study integrates the paradigm of neural networks with the concept of knowledge-based approaches, rendering them both more useful than when applied alone. The fuzzy rules extracted from the dynamic data relating to the power system formalize the knowledge applied by experts when conducting the voltage risk assessment procedure. The efficiency of the proposed technique is demonstrated via its application to the Taiwan Power Provider System (Tai-Power System) under various operating conditions. Overall, the results indicated that the proposed scheme achieves a minimum 97 % success rate in determining the current voltage security level.

  • Location and Propagation Status Sensing of Interference Signals in Cognitive Radio

    Kanshiro KASHIKI  Mitsuo NOHARA  Satoshi IMATA  Yukiko KISHIKI  

     
    PAPER-Spectrum Sensing

      Vol:
    E91-B No:1
      Page(s):
    77-84

    In a Cognitive Radio system, it is essential to recognize and avoid sources of interference signals. This paper describes a study on a location sensing scheme for interference signals, which utilizes multi-beam phased array antenna for cognitive wireless networks. This paper also elucidates its estimation accuracy of the interference location for the radio communication link using an OFDM signal such as WiMAX. Furthermore, we use the frequency spectrum of the received OFDM interference signal, to create a method that can estimate the propagation status. This spectrum can be monitored by using a software defined radio receiver.

1-20hit(41hit)