The search functionality is under construction.

Keyword Search Result

[Keyword] mobile network(34hit)

1-20hit(34hit)

  • Field Evaluation of Adaptive Path Selection for Platoon-Based V2N Communications

    Ryusuke IGARASHI  Ryo NAKAGAWA  Dan OKOCHI  Yukio OGAWA  Mianxiong DONG  Kaoru OTA  

     
    PAPER-Network

      Pubricized:
    2022/11/17
      Vol:
    E106-B No:5
      Page(s):
    448-458

    Vehicles on the road are expected to connect continuously to the Internet at sufficiently high speeds, e.g., several Mbps or higher, to support multimedia applications. However, even when passing through a well-facilitated city area, Internet access can be unreliable and even disconnected if the travel speed is high. We therefore propose a network path selection technique to meet network throughput requirements. The proposed technique is based on the attractor selection model and enables vehicles to switch the path from a route connecting directly to a cellular network to a relay type through neighboring vehicles for Internet access. We also develop a mechanism that prevents frequent path switching when the performance of all available paths does not meet the requirements. We conduct field evaluations by platooning two vehicles in a real-world driving environment and confirm that the proposed technique maintains the required throughput of up to 7Mbps on average. We also evaluated our proposed technique by extensive computer simulations of up to 6 vehicles in a platoon. The results show that increasing platoon length yields a greater improvement in throughput, and the mechanism we developed decreases the rate of path switching by up to 25%.

  • A Compact and High-Resolution CMOS Switch-Type Phase Shifter Achieving 0.4-dB RMS Gain Error for 5G n260 Band

    Jian PANG  Xueting LUO  Zheng LI  Atsushi SHIRANE  Kenichi OKADA  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2021/08/31
      Vol:
    E105-C No:3
      Page(s):
    102-109

    This paper introduces a high-resolution and compact CMOS switch-type phase shifter (STPS) for the 5th generation mobile network (5G) n260 band. In this work, totally four coarse phase shifting stages and a high-resolution tuning stage are included. The coarse stages based on the bridged-T topology is capable of providing 202.5° phase coverage with a 22.5° tuning step. To further improve the phase shifting resolution, a compact fine-tuning stage covering 23° is also integrated with the coarse stages. Sub-degree phase shifting resolution is realized for supporting the fine beam-steering and high-accuracy phase calibration in the 5G new radio. Simplified phase control algorithm and suppressed insertion loss can also be maintained by the proposed fine-tuning stage. In the measurement, the achieved RMS gain errors at 39 GHz are 0.1 dB and 0.4 dB for the coarse stages and fine stage, respectively. The achieved RMS phase errors at 39 GHz are 3.1° for the coarse stages and 0.1° for the fine stage. Within 37 GHz to 40 GHz, the measured return loss within all phase-tuning states is always better than -14 dB. The proposed phase shifter consumes a core area of only 0.12mm2 with 65-nm CMOS process, which is area-efficient.

  • Analysis against Security Issues of Voice over 5G

    Hyungjin CHO  Seongmin PARK  Youngkwon PARK  Bomin CHOI  Dowon KIM  Kangbin YIM  

     
    PAPER

      Pubricized:
    2021/07/13
      Vol:
    E104-D No:11
      Page(s):
    1850-1856

    In Feb 2021, As the competition for commercialization of 5G mobile communication has been increasing, 5G SA Network and Vo5G are expected to be commercialized soon. 5G mobile communication aims to provide 20 Gbps transmission speed which is 20 times faster than 4G mobile communication, connection of at least 1 million devices per 1 km2, and 1 ms transmission delay which is 10 times shorter than 4G. To meet this, various technological developments were required, and various technologies such as Massive MIMO (Multiple-Input and Multiple-Output), mmWave, and small cell network were developed and applied in the area of 5G access network. However, in the core network area, the components constituting the LTE (Long Term Evolution) core network are utilized as they are in the NSA (Non-Standalone) architecture, and only the changes in the SA (Standalone) architecture have occurred. Also, in the network area for providing the voice service, the IMS (IP Multimedia Subsystem) infrastructure is still used in the SA architecture. Here, the issue is that while 5G mobile communication is evolving openly to provide various services, security elements are vulnerable to various cyber-attacks because they maintain the same form as before. Therefore, in this paper, we will look at what the network standard for 5G voice service provision consists of, and what are the vulnerable problems in terms of security. And We Suggest Possible Attack Scenario using Security Issue, We also want to consider whether these problems can actually occur and what is the countermeasure.

  • Congestion-Adaptive and Deadline-Aware Scheduling for Connected Car Services over Mobile Networks Open Access

    Nobuhiko ITOH  Takanori IWAI  Ryogo KUBO  

     
    PAPER-Network

      Pubricized:
    2020/04/21
      Vol:
    E103-B No:10
      Page(s):
    1117-1126

    Road traffic collisions are an extremely serious and often fatal issue. One promising approach to mitigate such collisions is the use of connected car services that share road traffic information obtained from vehicles and cameras over mobile networks. In connected car services, it is important for data chunks to arrive at a destination node within a certain deadline constraint. In this paper, we define a flow from a vehicle (or camera) to the same vehicle (or camera) via an MEC server, as a mission critical (MC) flow, and call a deadline of the MC flow the MC deadline. Our research objective is to achieve a higher arrival ratio within the MC deadline for the MC flow that passes through both the radio uplink and downlink. We previously developed a deadline-aware scheduler with consideration for quality fluctuation (DAS-QF) that considers chunk size and a certain deadline constraint in addition to radio quality and utilizes these to prioritize users such that the deadline constraints are met. However, this DAS-QF does not consider that the congestion levels of evolved NodeB (eNB) differ depending on the eNB location, or that the uplink congestion level differs from the downlink congestion level in the same eNB. Therefore, in the DAS-QF, some data chunks of a MC flow are discarded in the eNB when they exceed either the uplink or downlink deadline in congestion, even if they do not exceed the MC deadline. In this paper, to reduce the eNB packet drop probability due to exceeding either the uplink and downlink deadline, we propose a deadline coordination function (DCF) that adaptively sets each of the uplink and downlink deadlines for the MC flow according to the congestion level of each link. Simulation results show that the DAS-QF with DCF offers higher arrival ratios within the MC deadline compared to DAS-QF on its own

  • Heterogeneous Delay Tomography for Wide-Area Mobile Networks Open Access

    Hideaki KINSHO  Rie TAGYO  Daisuke IKEGAMI  Takahiro MATSUDA  Jun OKAMOTO  Tetsuya TAKINE  

     
    PAPER-Network

      Pubricized:
    2019/02/06
      Vol:
    E102-B No:8
      Page(s):
    1607-1616

    In this paper, we consider network monitoring techniques to estimate communication qualities in wide-area mobile networks, where an enormous number of heterogeneous components such as base stations, routers, and servers are deployed. We assume that average delays of neighboring base stations are comparable, most of servers have small delays, and delays at core routers are negligible. Under these assumptions, we propose Heterogeneous Delay Tomography (HDT) to estimate the average delay at each network component from end-to-end round trip times (RTTs) between mobile terminals and servers. HDT employs a crowdsourcing approach to collecting RTTs, where voluntary mobile users report their empirical RTTs to a data collection center. From the collected RTTs, HDT estimates average delays at base stations in the Graph Fourier Transform (GFT) domain and average delays at servers, by means of Compressed Sensing (CS). In the crowdsourcing approach, the performance of HDT may be degraded when the voluntary mobile users are unevenly distributed. To resolve this problem, we further extend HDT by considering the number of voluntary mobile users. With simulation experiments, we evaluate the performance of HDT.

  • Mobile Network Architectures and Context-Aware Network Control Technology in the IoT Era Open Access

    Takanori IWAI  Daichi KOMINAMI  Masayuki MURATA  Ryogo KUBO  Kozo SATODA  

     
    INVITED PAPER

      Pubricized:
    2018/04/13
      Vol:
    E101-B No:10
      Page(s):
    2083-2093

    As IoT services become more popular, mobile networks will have to accommodate a wide variety of devices that have different requirements such as different bandwidth limitations and latencies. This paper describes edge distributed mobile network architectures for the IoT era based on dedicated network technology and multi-access edge computing technology, which have been discussed in 3GPP and ETSI. Furthermore, it describes two context-aware control methods that will make mobile networks on the network architecture more efficient, reliable, and real-time: autonomous and distributed mobility management and bandwidth-guaranteed transmission rate control in a networked control system.

  • Energy-Efficient Mobile Video Delivery Utilizing Moving Route Navigation and Video Playout Buffer Control

    Kenji KANAI  Sakiko TAKENAKA  Jiro KATTO  Tutomu MURASE  

     
    PAPER

      Pubricized:
    2018/01/22
      Vol:
    E101-B No:7
      Page(s):
    1635-1644

    Because mobile users demand a high quality and energy-friendly video delivery service that efficiently uses wireless resources, we introduce an energy-efficient video delivery system by applying moving route navigation and playout buffer control based on the mobile throughput history data. The proposed system first determines the optimal travel route to achieve high-speed and energy-efficient communications. Then when a user enters a high throughput area, our system temporarily extends the video playout buffer size, and the user aggressively downloads video segments via a high-speed and energy-efficient wireless connection until the extended buffer is filled. After leaving this area, the user consumes video segments from the extended buffer in order to keep smooth video playback without wireless communications. We carry out computer simulations, laboratory and field experiments and confirm that the proposed system can achieve energy-efficient mobile video delivery.

  • HOAH: A Hybrid TCP Throughput Prediction with Autoregressive Model and Hidden Markov Model for Mobile Networks

    Bo WEI  Kenji KANAI  Wataru KAWAKAMI  Jiro KATTO  

     
    PAPER

      Pubricized:
    2018/01/22
      Vol:
    E101-B No:7
      Page(s):
    1612-1624

    Throughput prediction is one of the promising techniques to improve the quality of service (QoS) and quality of experience (QoE) of mobile applications. To address the problem of predicting future throughput distribution accurately during the whole session, which can exhibit large throughput fluctuations in different scenarios (especially scenarios of moving user), we propose a history-based throughput prediction method that utilizes time series analysis and machine learning techniques for mobile network communication. This method is called the Hybrid Prediction with the Autoregressive Model and Hidden Markov Model (HOAH). Different from existing methods, HOAH uses Support Vector Machine (SVM) to classify the throughput transition into two classes, and predicts the transmission control protocol (TCP) throughput by switching between the Autoregressive Model (AR Model) and the Gaussian Mixture Model-Hidden Markov Model (GMM-HMM). We conduct field experiments to evaluate the proposed method in seven different scenarios. The results show that HOAH can predict future throughput effectively and decreases the prediction error by a maximum of 55.95% compared with other methods.

  • Data Mining Intrusion Detection in Vehicular Ad Hoc Network

    Xiaoyun LIU  Gongjun YAN  Danda B. RAWAT  Shugang DENG  

     
    PAPER

      Vol:
    E97-D No:7
      Page(s):
    1719-1726

    The past decade has witnessed a growing interest in vehicular networking. Initially motivated by traffic safety, vehicles equipped with computing, communication and sensing capabilities will be organized into ubiquitous and pervasive networks with a significant Internet presence while on the move. Large amount of data can be generated, collected, and processed on the vehicular networks. Big data on vehicular networks include useful and sensitive information which could be exploited by malicious intruders. But intrusion detection in vehicular networks is challenging because of its unique features of vehicular networks: short range wireless communication, large amount of nodes, and high mobility of nodes. Traditional methods are hard to detect intrusion in such sophisticated environment, especially when the attack pattern is unknown, therefore, it can result unacceptable false negative error rates. As a novel attempt, the main goal of this research is to apply data mining methodology to recognize known attacks and uncover unknown attacks in vehicular networks. We are the first to attempt to adapt data mining method for intrusion detection in vehicular networks. The main contributions include: 1) specially design a decentralized vehicle networks that provide scalable communication and data availability about network status; 2) applying two data mining models to show feasibility of automated intrusion detection system in vehicular networks; 3) find the detection patterns of unknown intrusions.

  • Optimal Mobile Switching Center Positioning and Cells Assignment Using Lagrangian Heuristic

    Jung Man HONG  Jong Hyup LEE  

     
    PAPER-Numerical Analysis and Optimization

      Vol:
    E94-A No:11
      Page(s):
    2425-2433

    This paper deals with the configuration of a wireless network with the aim of minimizing the overall cost of both operation and network installation. The trade-off between the operation cost and the installation cost is the key consideration when designing cellular telecommunication networks, and can save costs and improve the performance of the network. In this paper, we propose an integrated framework for selecting Mobile Switching Center (MSC) among the candidate MSCs and assigning Base Stations (BSs) to the selected MSCs with the objective function of minimizing the cost of MSC setup, BS to MSC cabling, as well as the cost of handover. Capacity constraint for the selected MSC is also considered in the problem. The problem is expressed in an integer programming model and the Lagrangian relaxation method is proposed to solve the problem by dualizing some constraints. The Lagrangian relaxed problem is decomposed into subproblems that can be resolved optimally. The Lagrangian heuristic algorithm is suggested to find feasible solutions to the original problem. Computational experiments are performed to test the effectiveness and efficiency of the proposed heuristic algorithm. In the experiments, Lagrangian bounds on the optimal solution are used to show the effectiveness of the algorithm. The results of the proposed algorithm are also compared with those of some conventional meta-heuristics, Tabu search (TS) and Genetic algorithm (GA). The computational experiments show that the performance of the proposed heuristics is satisfactory in both the speed and the quality of the solution generated.

  • A New Hybrid Scheme for Preventing Channel Interference and Collision in Mobile Networks

    Kyungjun KIM  Kijun HAN  

     
    LETTER-Network

      Vol:
    E93-B No:2
      Page(s):
    385-388

    This paper proposes a new hybrid scheme based on a given set of channels for preventing channel interference and collision in mobile networks. The proposed scheme is designed for improving system performance, focusing on enhancement of performance related to path breakage and channel interference. The objective of this scheme is to improve the performance of inter-node communication. Simulation results from this paper show that the new hybrid scheme can reduce a more control message overhead than a conventional random scheme.

  • Low Cost Time Synchronization Protocol for Wireless Sensor Network

    Ki-Hyeon KIM  Won-Kee HONG  Hie-Cheol KIM  

     
    PAPER

      Vol:
    E92-B No:4
      Page(s):
    1137-1143

    A time synchronization protocol for WSN is required to compensate time discrepancy. Time discrepancy among sensor nodes inevitably happens in WSN due to several internal and external factors. In order to make WSN's own job done effectively, a time synchronization protocol should be designed to achieve low execution time and low network traffic as well as accurate synchronization. Several synchronization protocols have been proposed to provide accurate time synchronization but do not consider execution time and network traffic for time synchronization. This paper proposes MNTP; it provides rapid and accurate time synchronization in multi-hop communication range. It presents a new broadcast scheme and time stamping mechanism to achieve low execution time and low network traffic along with accurate synchronization. Evaluation results show that MNTP improves synchronization accuracy up to 22% in single-hop and 51% in multi-hop respectively. MNTP also has 67 times and 58 times lower execution time and network traffic when 300 nodes are deployed in 2020 m2 sensor field.

  • Toward Ubiquitous Communication Platform for Emergency Medical Care Open Access

    Kenichi ISHIBASHI  Naoto MORISHIMA  Masayuki KANBARA  Hideki SUNAHARA  Masami IMANISHI  

     
    INVITED PAPER

      Vol:
    E92-B No:4
      Page(s):
    1077-1085

    Interaction between emergency medical technicians (EMTs) and doctors is essential in emergency medical care. Doctors require diverse information related to a patient to provide efficient aid. In 2005, we started the Ikoma119 project and have developed a ubiquitous communication platform for emergency medical care called Mobile ER. Our platform, which is based on wireless internet technology, has such desirable properties as low-cost, location-independent service, and ease of service introduction. We provide an overview of our platform and describe the services that we have developed. We also discuss the remaining issues to realize our platform's actual operation.

  • Adaptive Packet Size Control Using Beta Distribution Mobility Estimation for Rapidly Changing Mobile Networks

    Dong-Chul GO  Jong-Moon CHUNG  Su Young LEE  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E92-B No:2
      Page(s):
    599-603

    An adaptive algorithm to optimize the packet size in wireless mobile networks with Gauss-Markov mobility is presented. The proposed control algorithm conducts adaptive packet size control for mobile terminals that experience relatively fast changing channel conditions, which could be caused by fast mobility or other rapidly changing interference conditions. Due to the fast changing channel conditions, the packet size controller uses short channel history for channel status estimation and takes advantage of a pre-calculated probability density function (PDF) of the distance of the mobile nodes in the estimation process. The packet size is adapted to maximize the communication performance through automatic repeat request (ARQ). The adaptive packet size controlling algorithm is based on an estimation of the channel error rate and the link statistics obtained from the mobility pattern. It was found that the distribution of the link distance among mobile nodes following the Markov-Gauss mobility pattern in a circular communication range well fits the Beta PDF. By adapting the Beta PDF from the mobility pattern, the results show that it is possible to estimate the channel condition more accurately and thereby improve the throughput and utilization performance in rapidly changing wireless mobile networking systems.

  • A Hierarchical Key Management Scheme for Authentication of Roaming Mobile Nodes between Domains in Mobile Networks

    Kihun HONG  Souhwan JUNG  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E89-B No:12
      Page(s):
    3417-3420

    This letter proposes a hierarchical key management scheme based on hash key chain for authentication of roaming mobile nodes in both intra-domain and inter-domain. The key management scheme uses a local master key concept for reducing the latency of the authentication procedure and the communication overhead between a home authentication server and an access point in the foreign domain. The proposed scheme also supports secure separation of the authentication key among local authentication servers using hash key chain.

  • Cooperative Networking Based on Infrastructure Multihop Architecture in Heterogeneous Mobile Networks

    Masato YAMADA  Ryoichi SHINKUMA  Tatsuro TAKAHASHI  

     
    PAPER

      Vol:
    E89-B No:10
      Page(s):
    2763-2773

    In heterogeneous mobile networks, infrastructure multihop techniques enable mobile stations (MSs) with only a single wireless interface to connect with other networks via multiple-interface MSs (MMSs). That is, MMSs can become gateways between two different mobile networks. Cooperation between different mobile networks linked by MMSs can yield many benefits, including coverage expansion, load balancing, and throughput improvement. We studied how to control these cooperative benefits. We developed a network control mechanism, Cooperative Networking, which controls the cooperative benefits in heterogeneous infra-multihop networks. The proposed mechanism assigns a cooperation rule to MSs. By following the rule, every MS chooses a path to a base station, such as direct connection to 3G networks or infra-multihop connection to wireless local area networks (WLANs). Cooperation rules are designed according to the cooperative benefits, which are selected based on the needs of network operators or users. We call a selected cooperative benefit a networking policy. In our proposed cooperative networking mechanism, network operators can adaptively select a networking policy appropriate for network conditions and the needs of users. Computer simulation results validated our proposed mechanism.

  • CoMoRoHo: Cooperative Mobile Router-Based Handover Scheme for Long-Vehicular Multihomed Networks

    Ved P. KAFLE  Eiji KAMIOKA  Shigeki YAMADA  

     
    PAPER

      Vol:
    E89-B No:10
      Page(s):
    2774-2785

    To support multimedia applications effectively in mobile networks, the handover latency or packet losses during handover should be very small. Addressing this issue, we present a cooperative mobile router-based handover (CoMoRoHo) scheme for long-vehicular multihomed mobile networks. The basic idea behind CoMoRoHo is to enable different mobile routers to access different subnets during a handover and cooperatively receive packets destined for each other. In general, packet losses are directly proportional to handover latency; however, the overlapped reception of packets from different subnets makes possible to minimize packet losses even without reducing handover latency. To evaluate the scheme, we carried out performance modeling of the CoMoRoHo scheme in comparison with the Fast Handover for Mobile IPv6 (FMIPv6) protocol in regard to the handover latency, packet loss, signaling overhead, and packet delivery overhead in access networks. The analysis results show that CoMoRoHo outperforms FMIPv6 by reducing the packet losses as well as signaling overheads by more than 50%. Moreover, CoMoRoHo imposes lower packet delivery overheads required for preventing packets from being dropped from access routers. We thus conclude that CoMoRoHo is a scalable scheme because its performance remains intact even when the access network is overloaded.

  • Proactive Defense Mechanism against IP Spoofing Traffic on a NEMO Environment

    Mihui KIM  Kijoon CHAE  

     
    PAPER

      Vol:
    E89-A No:7
      Page(s):
    1959-1967

    The boundary of a distributed denial of service (DDoS) attack, one of the most threatening attacks in a wired network, now extends to wireless mobile networks, following the appearance of a DDoS attack tool targeted at mobile phones. However, the existing defense mechanisms against such attacks in a wired network are not effective in a wireless mobile network, because of differences in their characteristics such as the mobile possibility of attack agents. In this paper, we propose a proactive defense mechanism against IP spoofing traffic for mobile networks. IP spoofing is one of the features of a DDoS attack against which it is most difficult to defend. Among the various mobile networks, we focus on the Network Mobility standard that is being established by the NEMO Working Group in the IETF. Our defense consists of following five processes: speedy detection, filtering of attack packets, identification of attack agents, isolation of attack agents, and notification to neighboring routers. We simulated and analyzed the effects on normal traffic of moving attack agents, and the results of applying our defense to a mobile network. Our simulation results show that our mechanism provides a robust defense.

  • On Reducing IP Mobility Cost in Mobile Networks

    Taehyoun KIM  Jaiyong LEE  

     
    PAPER-Network

      Vol:
    E89-B No:3
      Page(s):
    731-738

    Hierarchical Mobile IPv6 (HMIPv6) was proposed by the Internet Engineering Task Force (IETF) for efficient mobility management. HMIPv6 reduces the amount of signaling in the wired network link that exists in Mobile IPv6. But, HMIPv6 cannot reduce the signaling cost in the wireless link. In mobile networks, the wireless link has far less available bandwidth resources and limited scalability compared with the wired network link. Therefore, the signaling overhead associated with mobility management severely degrades the wireless link. In this paper, we propose virtual-IP (VIP) allocation scheme with dynamic VIP zone to reduce the wireless signaling cost in mobile networks. The performance of the proposed scheme is compared with HMIPv6. Based on the numerical analysis and simulation, we show that VIP allocation scheme reduces the wireless signaling cost under various system conditions.

  • Optimal Bandwidth Reservation in Multiservice Mobile Cellular Networks with Movement Prediction

    Vicent PLA  Jose Manuel GIMENEZ-GUZMAN  Jorge MARTINEZ  Vicente CASARES-GINER  

     
    LETTER-Terrestrial Radio Communications

      Vol:
    E88-B No:10
      Page(s):
    4138-4141

    We study the impact of incorporating handoff prediction information in the session admission control process in mobile cellular networks. We evaluate the performance of optimal policies obtained with and without the predictive information, while taking into account possible prediction errors. Two different approaches to compute the optimal admission policy were studied: dynamic programming and reinforcement learning. Numerical results show significant performance gains when the predictive information is used in the admission process.

1-20hit(34hit)