Roberto PROIETTI Xian XIAO Marjan FARIBORZ Pouya FOTOUHI Yu ZHANG S. J. Ben YOO
This paper summarizes our recent studies on architecture, photonic integration, system validation and networking performance analysis of a flexible low-latency interconnect optical network switch (Flex-LIONS) for datacenter and high-performance computing (HPC) applications. Flex-LIONS leverages the all-to-all wavelength routing property in arrayed waveguide grating routers (AWGRs) combined with microring resonator (MRR)-based add/drop filtering and multi-wavelength spatial switching to enable topology and bandwidth reconfigurability to adapt the interconnection to different traffic profiles. By exploiting the multiple free spectral ranges of AWGRs, it is also possible to provide reconfiguration while maintaining minimum-diameter all-to-all interconnectivity. We report experimental results on the design, fabrication, and system testing of 8×8 silicon photonic (SiPh) Flex-LIONS chips demonstrating error-free all-to-all communication and reconfiguration exploiting different free spectral ranges (FSR0 and FSR1, respectively). After reconfiguration in FSR1, the bandwidth between the selected pair of nodes is increased from 50Gb/s to 125Gb/s while an all interconnectivity at 25Gb/s is maintained using FSR0. Finally, we investigate the use of Flex-LIONS in two different networking scenarios. First, networking simulations for a 256-node datacenter inter-rack communication scenario show the potential latency and energy benefits when using Flex-LIONS for optical reconfiguration based on different traffic profiles (a legacy fat-tree architecture is used for comparison). Second, we demonstrate the benefits of leveraging two FSRs in an 8-node 64-core computing system to provide reconfiguration for the hotspot nodes while maintaining minimum-diameter all-to-all interconnectivity.
We report our recent progress in silicon photonics integrated device technology targeting on-chip-level large-capacity optical interconnect applications. To realize high-capacity data transmission, we successfully developed on-package-type silicon photonics integrated transceivers and demonstrated simultaneous 400 Gbps operation. 56 Gbps pulse-amplitude-modulation (PAM) 4 and wavelength-division-multiplexing technologies were also introduced to enhance the transmission capacity.
Nobuhiko NISHIYAMA JoonHyun KANG Yuki KUNO Kazuto ITOH Yuki ATSUMI Tomohiro AMEMIYA Shigehisa ARAI
To realize three-dimensional (3D) optical interconnection on large-scale integration (LSI) circuits, layer-to-layer couplers based on Si-photonics platform were reviewed. In terms of optical cross talk, more than 1 µm layer distance is required for 3D interconnection. To meet this requirement for the layer-to-layer optical coupler, we proposed two types of couplers: a pair of grating couplers with metal mirrors for multi-layer distance coupling and taper-type directional couplers for neighboring layer distance coupling. Both structures produced a high coupling efficiency with relatively compact (∼100 µm) device sizes with a complementary metal oxide semiconductor (CMOS) compatible fabrication process.
Kengo NOZAKI Shinji MATSUO Koji TAKEDA Takuro FUJII Masaaki ONO Abdul SHAKOOR Eiichi KURAMOCHI Masaya NOTOMI
An ultra-compact InGaAs photodetector (PD) is demonstrated based on a photonic crystal (PhC) waveguide to meet the demand for a photoreceiver for future dense photonic integration. Although the PhC-PD has a length of only 1.7µm and a capacitance of less than 1fF, a high responsivity of 1A/W was observed both theoretically and experimentally. This low capacitance PD allows us to expect a resistor-loaded receiver to be realized that requires no electrical amplifiers. We fabricated a resistor-loaded PhC-PD for light-to-voltage conversion, and demonstrated a kV/W efficiency with a GHz bandwidth without using amplifiers. This will lead to a photoreceiver with an ultralow energy consumption of less than 1fJ/bit, which is a step along the road to achieving a dense photonic network and processor on a chip.
Tetsuro KOMUKAI Hirokazu KUBOTA Toshikazu SAKANO Toshihiko HIROOKA Masataka NAKAZAWA
Triggered by the Great East Japan Earthquake in March 2011, the authors have been studying a resilient network whose key element is a movable and deployable ICT resource unit. The resilient network needs a function of robust and immediate connection to a wide area network active outside the damaged area. This paper proposes an application of digital coherent technology for establishing optical interconnection between the movable ICT resource unit and existing network nodes through a photonic network, rapidly, easily and with the minimum in manual work. We develop a prototype of a 100Gbit/s digital coherent transponder which is installable to our movable and deployable ICT resource unit and experimentally confirm the robust and immediate connection by virtue of the plug and play function.
Yutaka URINO Yoshiji NOGUCHI Nobuaki HATORI Masashige ISHIZAKA Tatsuya USUKI Junichi FUJIKATA Koji YAMADA Tsuyoshi HORIKAWA Takahiro NAKAMURA Yasuhiko ARAKAWA
One of the most serious challenges facing the exponential performance growth in the information industry is a bandwidth bottleneck in inter-chip interconnects. We therefore propose a photonics-electronics convergence system with a silicon optical interposer. We examined integration between photonics and electronics and integration between light sources and silicon substrates, and we fabricated a conceptual model of the proposed system based on the results of those examinations. We also investigated the configurations and characteristics of optical components for the silicon optical interposer: silicon optical waveguides, silicon optical splitters, silicon optical modulators, germanium photodetectors, arrayed laser diodes, and spot-size converters. We then demonstrated the feasibility of the system by fabricating a high-density optical interposer by using silicon photonics integrated with these optical components on a single silicon substrate. As a result, we achieved error-free data transmission at 12.5 Gbps and a high bandwidth density of 6.6 Tbps/cm2 with the optical interposer. We think that this technology will solve the bandwidth bottleneck problem.
Koji TAKEDA Tomonari SATO Takaaki KAKITSUKA Akihiko SHINYA Kengo NOZAKI Chin-Hui CHEN Hideaki TANIYAMA Masaya NOTOMI Shinji MATSUO
To meet the demand for light sources for on-chip optical interconnections, we demonstrate the continuous-wave (CW) operation of photonic-crystal (PhC) nanocavity lasers at up to 89.8 by using InP buried heterostructures (BH). The wavelength of a PhC laser can be precisely designed over a wide range exceeding 100 nm by controlling the lattice constant of the PhC. The dynamic responses of the PhC laser are also demonstrated with a 3-dB bandwidth of over 7.0 GHz at 66.2. These results reveal the laser's availability for application to wavelength division multiplexed (WDM) optical interconnection on CMOS chips. We discuss the total bandwidths of future on-chip optical interconnections, and report the capabilities of PhC lasers.
Naofumi SUZUKI Takayoshi ANAN Hiroshi HATAKEYAMA Kimiyoshi FUKATSU Kenichiro YASHIKI Keiichi TOKUTOME Takeshi AKAGAWA Masayoshi TSUJI
We have developed InGaAs-based VCSELs operating around 1.1 µm for high-speed optical interconnections. By applying GaAsP barrier layers, temperature characteristics were considerably improved compared to GaAs barrier layers. As a result, 25 Gbps 100 error-free operation was achieved. These devices also exhibited high reliability. No degradation was observed over 3,000 hours under operation temperature of 150 and current density of 19 kA/cm2. We also developed VCSELs with tunnel junctions for higher speed operation. High modulation bandwidth of 24 GHz and a relaxation oscillation frequency of 27 GHz were achieved. 40 Gbps error-free operation was also demonstrated.
Keiko ODA Takahiro MATSUBARA Kei-ichiro WATANABE Kaori TANAKA Maraki MAETANI
We propose a gap-less optical interconnection between BGA package and board for practical on-board, chip-to-chip optical interconnection. The optical interconnect consists of polymer optical waveguides, an integral mirror on the PWB (printed wiring board), an optical via hole through package, and a connection structure and method requiring no alignment process. Optical waveguide, mirror, waveguide extensions and alignment studs were fabricated on the PWB as horizontal optical interconnect. Coaxial structured optical vias with core and cladding were formed through the package and with precise holes for alignment. Two packages were attached onto the PWB using standard BGA technology utilizing passive optical alignment. The optical characteristics and 10 Gbit/s open-eye diagram were measured. A completely gap-less three dimensional optical interconnect between package-PWB-package was demonstrated.
We propose and describe a free-space optical interconnection device with a photorefractive semi-linear resonator. The hologram in the photorefractive crystal is, in general, volatile and the erasing of it coincides with the diffraction of the signal beam. Therefore we have to reform the hologram again after several transmissions of the data or use some fixing techniques such as thermal fixing and electrical fixing. In our interconnection device, the hologram is enhanced by the feedback beam that is a part of the input signal divided by the beam splitter within semi-linear resonator, therefore the sustentation time of the connection can be extended. We explain the sustentation mechanism and investigate the optimum reflectivity of the beam splitters, which determine the feedback rate of the input signal, within feedback circuit for the high output conversion efficiency. We also analyze the coupling strength threshold for sustentation of the connection. We give a basic experiment on 33 interconnection by using BaTiO3 crystal and Ar+ laser whose wavelength is 514 [nm]. We show that the connections are held for long time without the continuous illumination of the control beam.
Satoru YAMAGUCHI Keiichiro ITOH Yukiharu OHNO Yoshio SHIMODA Tsuyoshi HAYASHI Toshio ASHIDA Tetsuo MIKAZUKI
This paper describes an innovative, high-speed optical backboard bus composed of an optical star coupler, optical-transmitter modules, optical-receiver modules, and optical multi-mode glass fibers. A highly efficient optical coupling structure with an aspherical lens and a laser diode was designed to achieve a coupling efficiency of 90%, enabling distribution of optical signals at up to 1 Gb/s to 50 function boards. Embedded optical fibers in a printed circuit board were used to achieve precise control of the optical propagation delay times and permit a high packaging density. We developed small laser-diode and photo-diode modules suitable for optical coupling with the embedded fibers. A fabricated prototype optical backboard bus controlled by a controller IC mounted on a function board was able to successfully distribute high-speed optical signals to function boards with a high packaging density.
Jun TANIDA Keiichiro KAGAWA Kenji YAMADA
As a new category of the optical application system integrated with electronics, the opto-electronic information system (OEIS) is presented. Combination of the different characteristic technologies, optics and electronics, is expected to be useful for development of an effective and high-performance information systems. The properties of the optical technologies such as parallelism, high-speed, and large information capacity can be utilized for information processing. Even if some of the functions are emulated by the electronics, the optics give more effective solutions. To implement the OEIS, various optoelectronic devices and fabrication technologies are available including vertical cavity surface emitting lasers and spatial light modulators. There are two forms of system construction for the OEIS: an application of optics to an electronic-based system and the reversed form. As examples of the OEIS, the parallel matching architecture (PMA) and the thin observation module by bound optics (TOMBO) are presented. The PMA is an architecture of parallel computing system specified for global processing. This architecture shows a typical strategy to utilize the optical interconnection capability with flexibility of the electronic technology. The TOMBO presents possibility of morphological conversion using combination of the optical and electronic technologies. A compound-eye imaging system and post digital processing enable us to realize a very thin image capturing system. The issues related on development of the OEIS are proper usage of optics, effective fusion of the optical and electronic technologies, methodologies for system construction, fabrication supporting tools, and development of attractive demonstrators other than communication and interconnection fields.
Rainer MICHALZIK Karl Joachim EBELING Max KICHERER Felix MEDERER Roger KING Heiko UNOLD Roland JAGER
The present paper discusses several promising application areas for optical data links based on high-performance vertical-cavity surface-emitting laser diodes (VCSELs). Both 850 and 980 nm emission wavelength devices realized in the GaAs-AlGaAs or InGaAs-AlGaAs material systems are considered. We show data transmission results of 10 Gb/s signals at 830 nm wavelength over a new high-bandwidth multimode silica fiber of up to 1.6 km length. The same fiber type is employed to demonstrate the first 40 Gb/s transport over 300 m distance by means of a 4-channel coarse wavelength-division multiplexing approach. A first 1 10 linear VCSEL array capable of 10 Gb/s per channel operation is presented for use in next generation parallel optical modules. To improve the singlemode emission characteristics for output power in the 5 mW range we introduce a new device concept incorporating a long monolithic cavity. For low-cost short-distance data links we investigate graded-index polymer optical fibers and report on up to 9 Gb/s transmission over a length of 100 m. Polymer waveguides are also used in an optical layer of a hybrid electrical-optical printed circuit board. Transmitted 10 Gb/s optical data over a prototype board show the potential of this new technology. Finally we present two-dimensional VCSEL arrays for highly parallel data transport on a CMOS chip level. Both 980 and 850 nm bottom emitting devices with modulation capabilities up to 12.5 Gb/s are discussed.
Rainer MICHALZIK Karl Joachim EBELING Max KICHERER Felix MEDERER Roger KING Heiko UNOLD Roland JAGER
The present paper discusses several promising application areas for optical data links based on high-performance vertical-cavity surface-emitting laser diodes (VCSELs). Both 850 and 980 nm emission wavelength devices realized in the GaAs-AlGaAs or InGaAs-AlGaAs material systems are considered. We show data transmission results of 10 Gb/s signals at 830 nm wavelength over a new high-bandwidth multimode silica fiber of up to 1.6 km length. The same fiber type is employed to demonstrate the first 40 Gb/s transport over 300 m distance by means of a 4-channel coarse wavelength-division multiplexing approach. A first 1 10 linear VCSEL array capable of 10 Gb/s per channel operation is presented for use in next generation parallel optical modules. To improve the singlemode emission characteristics for output power in the 5 mW range we introduce a new device concept incorporating a long monolithic cavity. For low-cost short-distance data links we investigate graded-index polymer optical fibers and report on up to 9 Gb/s transmission over a length of 100 m. Polymer waveguides are also used in an optical layer of a hybrid electrical-optical printed circuit board. Transmitted 10 Gb/s optical data over a prototype board show the potential of this new technology. Finally we present two-dimensional VCSEL arrays for highly parallel data transport on a CMOS chip level. Both 980 and 850 nm bottom emitting devices with modulation capabilities up to 12.5 Gb/s are discussed.
Rainer HAINBERGER Yuki KOMAI Yasuyuki OZEKI Masahiro TSUCHIYA Kashiko KODATE Takeshi KAMIYA
By combining the technology of all-optical saturable absorbers and the diffractive optics, a scheme of all-optical time division demultiplexing module is investigated. Following authors' proposal, design, test fabrication of the optical platform in the previous paper, this paper focuses on the characterization of switching performance. Using a multiple quantum well saturable absorber of InGaAs/InAlAs composition, and gain switched semiconductor laser pulses of 25 ps pulse width, the switching function was demonstrated experimentally at wavelength of 1.55 µm. The switching on-off ratio was compared among 4 lens configuration, 2 lens configuration (2L) and free space, collinear geometry. No degradation was observed in the case of 2 lens configuration in comparison to collinear illumination. Thus the feasibility of all-optical switch module with power efficiency and high speed is predicted, under the assumption of the progress in sub-micron lithography.
Shinji NISHIMURA Tomohiro KUDOH Hiroaki NISHI Koji TASHO Katsuyoshi HARASAWA Shigeto AKUTSU Shuji FUKUDA Yasutaka SHIKICHI
RHiNET-2/SW is a network switch for the RHiNET-2 parallel computing system. RHiNET-2/SW enables high-speed and long-distance data transmission between PC nodes for parallel computing. In RHiNET-2/SW, a one-chip CMOS switch-LSI and eight pairs of 800-Mbit/s 12-channel parallel optical interconnection modules are mounted into a single compact board. This switch allows high-speed 8-Gbit/s/port parallel optical data transmission over a distance of up to 100 m, and the aggregate throughput is 64 Gbit/s/board. The CMOS-ASIC switching LSI enables high-throughput (64 Gbit/s) packet switching with a single chip. The parallel optical interconnection modules enable high-speed and low-latency data transmission over a long distance. The structure and layout of the printed circuit board is optimized for high-speed, high-density device implementation to overcome electrical problems such as signal propagation-loss and crosstalk. All of the electrical interfaces are composed of high-speed CMOS-LVDS logic (800 Mbit/s/pin). We evaluated the reliability of the optical I/O port through long-term data transmission. No errors were detected during 50 hours of continuous data transmission at a data rate of 800 Mbit/s 10 bits (BER: < 2.44 10-14). This test result shows that RHiNET-2/SW can provide high-throughput, long-transmission-length, and highly reliable data transmission in a practical parallel computing system.
Osamu TAKANASHI Tsutomu HAMADA Junji OKADA Takeshi KAMIMURA Hidenori YAMADA Masao FUNADA Takashi OZAWA
We propose a low-cost, high-uniformity, and low excess loss star coupler. The proposed star coupler comprises a planar lightguide, a diffuser, and polymer optical fibers (POFs). High-uniformity of optical power distribution was enabled by utilizing the diffused light transmission. Input light is diffused by the diffuser that is attached between the input POFs and the planar lightguide and transmitted through the planar lightguide. The optimum width-to-length ratio of the lightguide is clarified through simulations and experiments. We fabricated the star couplers based on the optimum width-to-length ratio for evaluation. The fabricated 1616 star coupler showed the excellent uniformity at the distribution ratio of 0.8 dB and the excess loss of 3.3 dB. The fabricated star coupler also provides a wide tolerance for misalignment. The maximum number of nodes to assure high transmission quality and the bandwidth of the proposed star coupler are discussed. The proposed star coupler is remarkably cost effective since it can be produced by injection-molding technology. The proposed star coupler enables easy multi-channel interconnection.
Yuko KAWAJIRI Shinji KOIKE Yoshimitsu ARAI Yasuhiro ANDO
We propose a compact multi-channel 90 optical deflection device for short-distance optical interconnection. The device consists of stacked bent multimode optical waveguides having reflecting mirrors with bending angles of 90. The structure of the bent multimode optical waveguide with a bending angle of 90 was designed by ray-tracing simulations. The simulated insertion loss for each channel of the device was 0.5 dB. We also propose a simple fabrication process using a pair of multi-channel linear optical waveguides with symmetrical 45 mirrors. An 8-channel 90 optical deflection device was fabricated using polymer materials and basic operation was confirmed. Our device has good potential for use as a high-density optical interconnection device.
Mitsuo USUI Nobuo SATO Akira OHKI Koji ENBUTSU Makoto HIKITA Michiyuki AMANO Kohsuke KATSURA Yasuhiro ANDO
Aiming at lower cost and further miniaturization, we developed a new optical coupling system for use as an optical interface of a parallel optical interconnect module, called ParaBIT-1. It consists of a new-structure 24-fiber bare fiber (BF) connector whose main parts are made of molded plastic and a 24-channel optical coupling component using new polymeric optical waveguide film. To prevent bare fibers from breaking, the BF connector plug has a fiber protector. This BF connector can be joined by direct physical contact between bare fibers in fiber guide holes with a 250-µm pitch. The buckling forces of the fibers themselves secure the physical contacts. The average measured insertion loss of the 24-fiber BF connector was 0.05 dB, and the return losses were over 35 dB. The optical coupling components are composed of a 24-ch polymeric optical waveguide film with 45 mirrors and the 24-fiber BF connector interface, and can be assembled by passive alignment. The high thermal stability of the film allows soldering, and the film is fabricated by direct photo patterning. The average insertion losses of the components for transmitter and receiver modules were 1.28 and 1.35 dB, respectively.
Takeshi SAKAMOTO Nobuyuki TANAKA Yasuhiro ANDO
We have developed a low-latency, error-correcting-code-(ECC-)adaptable skew-compensation technique, which is needed for high-speed and long-distance parallel optical interconnections. A new frame-coding technique called shuffled mB1C encoding, which requires no clock-rate conversion circuit and no data buffering, and a new skew-measurement method which is suitable for ECC adaptation have been developed for the compensation. Full-digital skew-compensation circuits using these new techniques were able to compensate for a two-clock-cycle skew, even when one transmission channel was removed. The maximum latency for skew compensation was only five clock cycles.