The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] plane(179hit)

61-80hit(179hit)

  • Influence of Adjacent Metal Cover Planes on EMC Filter Structures

    Thomas FISCHER  Goeran SCHUBERT  Manfred ALBACH  

     
    PAPER-PCB and Circuit Design for EMI Control

      Vol:
    E93-B No:7
      Page(s):
    1768-1775

    This paper deals with the influence of metal cover planes close to SMD filter structures. The low-pass structures are used for EMC purpose and work in a frequency range of 100 kHz to 4 GHz. It will be shown by both measurement and simulation that a close cover plane changes the filter behavior significantly in dependency of the filter component used. For low and high impedance filter structures different influences are obtained; a parameter study was carried out in order to derive design rules.

  • Experimental Quasi-Microwave Whole-Body Averaged SAR Estimation Method Using Cylindrical-External Field Scanning

    Yoshifumi KAWAMURA  Takashi HIKAGE  Toshio NOJIMA  

     
    PAPER-Biological Effects and Safety

      Vol:
    E93-B No:7
      Page(s):
    1826-1833

    The aim of this study is to develop a new whole-body averaged specific absorption rate (SAR) estimation method based on the external-cylindrical field scanning technique. This technique is adopted with the goal of simplifying the dosimetry estimation of human phantoms that have different postures or sizes. An experimental scaled model system is constructed. In order to examine the validity of the proposed method for realistic human models, we discuss the pros and cons of measurements and numerical analyses based on the finite-difference time-domain (FDTD) method. We consider the anatomical European human phantoms and plane-wave in the 2 GHz mobile phone frequency band. The measured whole-body averaged SAR results obtained by the proposed method are compared with the results of the FDTD analyses.

  • Electromagnetic Bandgap (EBG) Structures Using Open Stubs to Suppress Power Plane Noise

    Hiroshi TOYAO  Noriaki ANDO  Takashi HARADA  

     
    PAPER-PCB and Circuit Design for EMI Control

      Vol:
    E93-B No:7
      Page(s):
    1754-1759

    A novel approach is proposed for miniaturizing the unit cell size of electromagnetic bandgap (EBG) structures that suppress power plane noise. In this approach, open stubs are introduced into the shunt circuits of these EBG structures. Since the stub length determines the resonant frequencies of the shunt circuit, the proposed structures can maintain the bandgaps at lower frequencies without increasing the unit cell size. The bandgap frequencies were estimated by dispersion analysis based on the Bloch theorem and full-wave simulations. Sample boards of the proposed EBG structures were fabricated with a unit cell size of 2.1 mm. Highly suppressed noise propagation over the estimated frequency range of 1.9-3.6 GHz including the 2.4-GHz wireless-LAN band was experimentally demonstrated.

  • Secure Bit-Plane Based Steganography for Secret Communication

    Cong-Nguyen BUI  Hae-Yeoun LEE  Jeong-Chun JOO  Heung-Kyu LEE  

     
    PAPER-Application Information Security

      Vol:
    E93-D No:1
      Page(s):
    79-86

    A secure method for steganography is proposed. Pixel-value differencing (PVD) steganography and bit-plane complexity segmentation (BPCS) steganography have the weakness of generating blocky effects and noise in smooth areas and being detectable with steganalysis. To overcome these weaknesses, a secure bit-plane based steganography method on the spatial domain is presented, which uses a robust measure to select noisy blocks for embedding messages. A matrix embedding technique is also applied to reduce the change of cover images. Given that the statistical property of cover images is well preserved in stego-images, the proposed method is undetectable by steganalysis that uses RS analysis or histogram-based analysis. The proposed method is compared with the PVD and BPCS steganography methods. Experimental results confirm that the proposed method is secure against potential attacks.

  • Parallel Processing of Distributed Video Coding to Reduce Decoding Time

    Yoshihide TONOMURA  Takayuki NAKACHI  Tatsuya FUJII  Hitoshi KIYA  

     
    PAPER-Image Coding and Processing

      Vol:
    E92-A No:10
      Page(s):
    2463-2470

    This paper proposes a parallelized DVC framework that treats each bitplane independently to reduce the decoding time. Unfortunately, simple parallelization generates inaccurate bit probabilities because additional side information is not available for the decoding of subsequent bitplanes, which degrades encoding efficiency. Our solution is an effective estimation method that can calculate the bit probability as accurately as possible by index assignment without recourse to side information. Moreover, we improve the coding performance of Rate-Adaptive LDPC (RA-LDPC), which is used in the parallelized DVC framework. This proposal selects a fitting sparse matrix for each bitplane according to the syndrome rate estimation results at the encoder side. Simulations show that our parallelization method reduces the decoding time by up to 35[%] and achieves a bit rate reduction of about 10[%].

  • Fingerprinting Codes for Internet-Based Live Pay-TV System Using Balanced Incomplete Block Designs

    Shuhui HOU  Tetsutaro UEHARA  Takashi SATOH  Yoshitaka MORIMURA  Michihiko MINOH  

     
    PAPER-Contents Protection

      Vol:
    E92-D No:5
      Page(s):
    876-887

    In recent years, with the rapid growth of the Internet as well as the increasing demand for broadband services, live pay-television broadcasting via the Internet has become a promising business. To get this implemented, it is necessary to protect distributed contents from illegal copying and redistributing after they are accessed. Fingerprinting system is a useful tool for it. This paper shows that the anti-collusion code has advantages over other existing fingerprinting codes in terms of efficiency and effectivity for live pay-television broadcasting. Next, this paper presents how to achieve efficient and effective anti-collusion codes based on unital and affine plane, which are two known examples of balanced incomplete block design (BIBD). Meanwhile, performance evaluations of anti-collusion codes generated from unital and affine plane are conducted. Their practical explicit constructions are given last.

  • Analysis of Ground Wave Propagation over Land-to-Sea Mixed-Path by Using Equivalent Current Source on Aperture Plane

    Toru KAWANO  Keiji GOTO  Toyohiko ISHIHARA  

     
    PAPER

      Vol:
    E92-C No:1
      Page(s):
    46-54

    In this paper, we have obtained the integral representation for the ground wave propagation over land-to-sea mixed-paths which uses the equivalent current source on an aperture plane. By extending the integral to the complex plane and deforming the integration path into the steepest descent path, we have derived a simple integral representation for the mixed-path ground wave propagation. We have also derived the hybrid numerical and asymptotic representation for an efficient calculation of the ground wave and for easy understanding of the diffraction phenomena. By using the method of the stationary phase applicable uniformly as the stationary phase point approaches the endpoint, we have derived the high-frequency asymptotic solution for the ground wave propagation over the mixed-path. We have confirmed the validity of the various representations by comparing both with the conventional mixed-path theory and with the experimental results performed in Kanto areas including the sea near Tokyo bay. By examining the asymptotic solution in detail, we have found out the cause or the mechanism of the recovery effect occurring on the portion of the sea over the land-to-sea mixed-path.

  • Error Bounds of the Fast Inhomogeneous Plane Wave Algorithm

    Shinichiro OHNUKI  

     
    LETTER-Electromagnetic Theory

      Vol:
    E92-C No:1
      Page(s):
    169-172

    The Green's function of free space for the fast inhomogeneous plane wave algorithm is represented by an integration in the complex plane. The error in the computational process is determined by the number of sampling points, the truncation of the integration path, and the extrapolation. Therefore, the error control method is different from that for the fast multipole method. We will discuss the worst-case interactions of the fast inhomogeneous plane wave algorithm for the box implementation and define the upper and lower bounds of the computational error.

  • Fast Simulation Technique of Plane Circuits via Two-Layer CNN-Based Modeling

    Yuichi TANJI  Hideki ASAI  Masayoshi ODA  Yoshifumi NISHIO  Akio USHIDA  

     
    PAPER-Nonlinear Problems

      Vol:
    E91-A No:12
      Page(s):
    3757-3762

    A fast time-domain simulation technique of plane circuits via two-layer Cellular Neural Network (CNN)-based modeling, which is necessary for power/signal integrity evaluation in VLSIs, printed circuit boards, and packages, is presented. Using the new notation expressed by the two-layer CNN, 1,553 times faster simulation is achieved, compared with Berkeley SPICE (ngspice). In CNN community, CNNs are generally simulated by explicit numerical integration such as the forward Euler and Runge-Kutta methods. However, since the two-layer CNN is a stiff circuit, we cannot analyze it by using an explicit numerical integration method. Hence, to analyze the two-layer CNN and reduce the computational cost, the leapfrog method is introduced. This procedure would open an application of CNN to electronic design automation area.

  • Design of Low-Pass Filters Using Discrete-Time Domain Techniques

    Lin-Chuan TSAI  Kuo-Chih CHU  

     
    PAPER-Devices/Circuits for Communications

      Vol:
    E91-B No:10
      Page(s):
    3162-3165

    In this paper, a new formulation of equal-length three-section open stubs having two zeros located on the unit circle and one zero at z=-1 (θ=π) in the Z-plane is presented. In particular, new filter configurations consisting of equal-length two-section open stubs, cascade lines, open stubs, and three-section open stubs are employed to emulate the discrete-time filters. To examine the validity of our formulation, we realized two discrete-time Chebyshev type II low-pass filters in the form of microstrip lines. The frequency responses of these two filters are measured to validate this new formulation.

  • Matrix Order Reduction by Nodal Analysis Formulation and Relaxation-Based Fast Simulation for Power/Ground Plane

    Tadatoshi SEKINE  Yuichi TANJI  Hideki ASAI  

     
    PAPER-Analysis, Modelng and Simulation

      Vol:
    E91-A No:9
      Page(s):
    2450-2455

    This paper describes the matrix order reduction method by the nodal analysis formulation and the application of relaxation-based simulation technique to interconnect and plane networks. First, the characteristics of the power/ground plane networks are considered. Next, the formulation of the plane network by nodal analysis (NA) method is suggested. Furthermore, application and estimation results of the relaxation-based numerical analyses are shown. Finally, it is confirmed that the relaxation-based methods improved by the suggested formulation are much more efficient than the conventional direct-based methods.

  • Performance Analysis of a Collision Detection Algorithm of Spheres Based on Slab Partitioning

    Takashi IMAMICHI  Hiroshi NAGAMOCHI  

     
    PAPER

      Vol:
    E91-A No:9
      Page(s):
    2308-2313

    In this paper, we consider a collision detection problem of spheres which asks to detect all pairs of colliding spheres in a set of n spheres located in d-dimensional space. We propose a collision detection algorithm for spheres based on slab partitioning technique and a plane sweep method. We derive a theoretical upper bound on the time complexity of the algorithm. Our bound tells that if both the dimension and the maximum ratio of radii of two spheres are bounded, then our algorithm runs in O(n log n + K) time with O(n + K) space, where K denotes the number of pairs of colliding spheres.

  • A Study of Control Plane Stability with Retry Traffic: Comparison of Hard- and Soft-State Protocols

    Masaki AIDA  Chisa TAKANO  Masayuki MURATA  Makoto IMASE  

     
    PAPER-Network Management/Operation

      Vol:
    E91-B No:2
      Page(s):
    437-445

    Recently problems with commercial IP telephony systems have been reported one after another, in Japan. One of the important causes is congestion in the control plane. It has been recognized that with the current Internet it is important to control not only congestion caused by overload of the data plane but also congestion caused by overload of the control plane. In particular, "retry traffic," such as repeated attempts to set up a connection, tends to cause congestion. In general, users make repeated attempt to set up connections not only when the data plane is congested but also when the control plane in the network is overloaded. The latter is caused by user behavior: an increase in the waiting time for the processing of connection establishment to be completed tends to increase his or her initiation of reattempts. Thus, it is important to manage both data plane and control-plane resources effectively. In this paper, we focus on RSVP-based communication services including IP telephony, and introduce a model that takes account of both data-plane and control-plane systems, and we examine the behavior of retry traffic. In addition, we compare the system stability achieved by two different resource management methods, the hard-state method and the soft-state method.

  • In-Pixel Edge Detection Circuit without Non-uniformity Correction for an Infrared Focal Plane Array (IRFPA)

    Chul Bum KIM  Doo Hyung WOO  Yong Soo LEE  Hee Chul LEE  

     
    LETTER-Electronic Circuits

      Vol:
    E91-C No:2
      Page(s):
    235-239

    For real time image processing, a readout circuit for an infrared focal plane array (IRFPA) involving a new edge detection technique has been proposed in this letter. A non-uniformity correction unit (NUC), essential in an IRFPA because of bad non-uniformity characteristics of IR sensors is eliminated in this circuit by using a noise tolerant edge detection technique. In addition, real time edge detection can be possible, because of pixel-level integration and parallel processing. The proposed readout circuit shows an approximately three to nine times better edge error rate than other available methods using pixel-level parallel processing.

  • Scattering of TM Plane Wave from Periodic Grating with Single Defect

    Kazuhiro HATTORI  Junichi NAKAYAMA  Yasuhiko TAMURA  

     
    PAPER-Scattering and Diffraction

      Vol:
    E91-C No:1
      Page(s):
    17-25

    This paper deals with the scattering of a TM plane wave from a periodic grating with single defect, of which position is known. The surface is perfectly conductive and made up with a periodic array of rectangular grooves and a defect where a groove is not formed. The scattered wave above grooves is written as a variation from the diffracted wave for the perfectly periodic case. Then, an integral equation for the scattering amplitude is obtained, which is solved numerically by use of truncation and the iteration method. The differential scattering cross section and the optical theorem are calculated in terms of the scattering amplitude and are illustrated in figures. It is found that incoherent Wood's anomaly appears at critical angles of scattering. The physical mechanisms of Wood's anomaly and incoherent Wood's anomaly are discussed in relation to the guided surface wave excited by the incident plane wave. It is concluded that incoherent Wood's anomaly is caused by the diffraction of the guided surface wave.

  • A 100-Gb/s-Physical-Layer Architecture for Higher-Speed Ethernet for VSR and Backplane Applications

    Hidehiro TOYODA  Shinji NISHIMURA  Michitaka OKUNO  Matsuaki TERADA  

     
    PAPER-VLSI Architecture for Communication/Server Systems

      Vol:
    E90-C No:10
      Page(s):
    1957-1963

    A high-speed physical-layer architecture for next-generation higher-speed Ethernet for VSR and backplane applications was developed. VSR and backplane networks provide 100-Gb/s data transmission in "mega data centers" and blade servers, which have new and broad potential markets of LAN technologies. It supports 100-Gb/s-throughput, high-reliability, and low-latency data transmission, making it well suited to VSR and backplane applications for intra-building and intra-cabinet networks. Its links comprise ten 10-Gb/s high-speed serial lanes. Payload data are transmitted by ribbon fiber cables for very short reach and by copper channels for the backplane board. Ten lanes convey 320-bit data synchronously (32 bits10 lanes) and parity data of forward-error correction code (newly developed (544, 512) code FEC), providing highly reliable (BER<1E-22) data transmission with a burst-error correction with low latency (31.0 ns on the transmitter (Tx) side and 111.6 ns on the receiver (Rx) side). A 64B/66B code-sequence-based skew compensation mechanism, which provides low-latency compensation for the lane-to-lane skew (less than 51 ns), is used for parallel transmission. Testing this physical-layer architecture in an ASIC showed that it can provide 100-Gb/s data transmission with a 772-kgate circuit, which is small enough for implementation in a single LSI.

  • Permuting and Lifting Wavelet Coding for Structured Geometry Data of 3-D Polygonal Mesh

    Akira KAWANAKA  Shuji WATANABE  

     
    PAPER-Computer Graphics

      Vol:
    E90-D No:9
      Page(s):
    1439-1447

    This paper presents a lifting wavelet coding technique with permutation and coefficient modification processes for coding the structured geometry data of 3-D polygonal mesh model. One promising method for coding 3-D geometry data is based on the structure processing of a 3-D model on a triangle lattice plane, while maintaining connectivity. In the structuring process, each vertex may be assigned to several nodes on the triangular lattice plane. One of the nodes to which a vertex is assigned is selected as a representative node and the others are called expanded nodes. Only the geometry data of the vertices at the representative nodes are required for reconstructing the 3-D model. In this paper we apply a lifting wavelet transform with a permutation process for an expanded node at an even location in each decomposition step and the neighboring representative node. This scheme arranges more representative nodes into the lower frequency band. Also many representative nodes separated from the connective expanded nodes are made to adjoin each other in lower frequency bands, and the correlation between the representative nodes will be reduced by the following decomposition process. A process is added to use the modified coefficients obtained from the coefficients of the adjacent representative nodes instead of the original coefficients in the permutation process. This has the effect of restraining increases in the decomposed coefficients with larger magnitude. Some experiments in which the proposed scheme was applied to structured geometry data of a 3-D model with complex connectivity show that the proposed scheme gives better coding performance and the reconstructed models are more faithful to the original in comparison with the usual schemes.

  • A Waveguide Compatible NRD Guide E-Plane Bandpass Filter for 55 GHz Band OFDM Applications

    Takashi SHIMIZU  Yuki KAWAHARA  Takayuki NAKAGAWA  Tsukasa YONEYAMA  

     
    PAPER-Passive Devices/Circuits

      Vol:
    E90-C No:9
      Page(s):
    1729-1735

    A rectangular waveguide compatible NRD guide E-plane bandpass filter is proposed for 55 GHz band OFDM applications. The NRD guide E-plane bandpass filter is constructed by inserting a metal foil array in the E-plane of NRD guide. Simulation, fabrication, and handling of the filter are not difficult because each resonator is constructed by a couple of metal foils of a simple shape. A Chebyshev response 5-pole bandpass filter with a very narrow bandwidth of 550 MHz is designed and fabricated at 55 GHz band. Simulated and measured filter performances agree well with the design specifications. Insertion loss of the fabricated filter is found to be around 2.0 dB. Although temperature stability of the fabricated filter are found to be within manageable level, the adoption of cyclo olefin polymer can be one of solution for the temperature stability improvement.

  • GMPLS Interoperability Tests in Kei-han-na Info-Communication Open Laboratory on JGN II Network

    Satoru OKAMOTO  Wataru IMAJUKU  Tomohiro OTANI  Itaru NISHIOKA  Akira NAGATA  Mikako NANBA  Hideki OTSUKI  Masatoshi SUZUKI  Naoaki YAMANAKA  

     
    SURVEY PAPER-Standard and Interoperability

      Vol:
    E90-B No:8
      Page(s):
    1936-1943

    Generalized Multi-protocol Label Switching (GMPLS) technologies are expected a key technology that creates high-performance Internet backbone networks. There were many GMPLS interoperability trials. However, most of them reported the successful results only. How to set up a trial network and how to test it was generally not discussed. In this paper, as a kind of tutorial, detailed GMPLS field trials in the National Institute of Information and Communications Technology (NICT) Kei-han-na Info-Communication Open Laboratory, Interoperability Working Group (WG) are reported. The interoperability WG is aiming at the leading edge GMPLS protocol based Inter-Carrier Interface that utilizes wide-bandwidth, cost-effective photonic technology to implement IP-centric managed networks. The interoperability WG is a consortium for researching the GMPLS protocol and advancing a de facto standard in this area. Its experimental results, new ideas, and protocols are submitted to standardization bodies such as the International Telecommunications Union-Telecommunication standardization sector (ITU-T), the Internet Engineering Task Force (IETF), and the Optical Internetworking Forum (OIF). This paper introduces the activities of the interoperability WG; they include a nationwide GMPLS field trial using the JGN II network with multi-vendor, multi-switching-capable equipment and a GMPLS multi routing area trial that used a multi-vendor lambda-switching-capable network.

  • Optical Networks Functional Evolution and Control Technologies

    Peter SZEGEDI  Tomasz GAJEWSKI  Wataru IMAJUKU  Satoru OKAMOTO  

     
    SURVEY PAPER-Standard and Interoperability

      Vol:
    E90-B No:8
      Page(s):
    1944-1951

    In this paper the current trends in the optical networking including the physical components, technologies and control architectures are discussed. The possible interaction schemes and implementation models of the automatic communication between applications and network as well as between ASON/GMPLS based network domains are proposed. Finally, the related research activities based on simulation results of control plane dimensioning are illustrated and real test bed experiments on OIF worldwide interoperability demonstration and the ongoing European IST project MUPBED are disseminated.

61-80hit(179hit)