1-20hit |
Yuguang ZHANG Zhiyong ZHANG Wei ZHANG Deming MAO Zhihong RAO
Using a limited number of probes has always been a focus in interface-level network topology probing to discover complete network topologies. Stop-set-based network topology probing methods significantly reduce the number of probes sent but suffer from the side effect of incomplete topology information discovery. This study proposes an optimized probing method based on stop probabilities (SPs) that builds on existing stop-set-based network topology discovery methods to address the issue of incomplete topology information owing to multipath routing. The statistics of repeat nodes (RNs) and multipath routing on the Internet are analyzed and combined with the principles of stop-set-based probing methods, highlighting that stopping probing at the first RN compromises the completeness of topology discovery. To address this issue, SPs are introduced to adjust the stopping strategy upon encountering RNs during probing. A method is designed for generating SPs that achieves high completeness and low cost based on the distribution of the number of RNs. Simulation experiments demonstrate that the proposed stop-probability-based probing method almost completely discovers network nodes and links across different regions and times over a two-year period, while significantly reducing probing redundancy. In addition, the proposed approach balances and optimizes the trade-off between complete topology discovery and reduced probing costs compared with existing topology probing methods. Building on this, the factors influencing the probing cost of the proposed method and methods to further reduce the number of probes while ensuring completeness are analyzed. The proposed method yields universally applicable SPs in the current Internet environment.
Xiaojuan ZHU Yang LU Jie ZHANG Zhen WEI
Topological inference is the foundation of network performance analysis and optimization. Due to the difficulty of obtaining prior topology information of wireless sensor networks, we propose routing topology inference, RTI, which reconstructs the routing topology from source nodes to sink based on marking packets and probing locally. RTI is not limited to any specific routing protocol and can adapt to a dynamic and lossy networks. We select topological distance and reconstruction time to evaluate the correctness and effectiveness of RTI and then compare it with PathZip and iPath. Simulation results indicate that RTI maintains adequate reconstruction performance in dynamic and packet loss environments and provides a global routing topology view for wireless sensor networks at a lower reconstruction cost.
Marat ZHANIKEEV Yoshiaki TANAKA
In NGN standards, End Host, also referred to as Terminal Equipment (TE), holds an important place in end-to-end path performance. However, most researchers neglect TE performance when considering performance of end-to-end paths. As far as the authors' knowledge goes, no previous study has proposed a model for TE performance. This paper proposes a method for measuring performance of TE and model extraction based on measurement data. The measurement was made possible with the use of a special NPU (Network Processing Unit) implemented as a programmable NIC. Along with the probing itself, a framework for removing the skew between the NPU and OS is developed in this paper. The multidimensional analysis includes method of probing, packet size and background traffic volume, and studies their effect on TE performance. A method for extracting a generic TE model is proposed. The outcome of this research can be used for modelling TE in simulations and in modelling end-to-end performance when considering QoS in NGN.
Internet group-based application layer services such as the overlay networks and P2P systems can benefit from end-to-end network status information. An efficient and accurate bandwidth measurement technique plays an important role in acquiring this information. We propose an end-to-end bottleneck link capacity measurement technique that utilizes path signatures combined with graphical analyses. This feature reduces the probe overhead and decreases the convergence time. We used ns-2 simulations and actual Internet measurements, which resulted in a high level of accuracy and a short probe time with low overhead.
Jianxin LIAO Jingyu WANG Tonghong LI Xiaomin ZHU
We propose a novel probing scheme capable of discovering shared bottlenecks among multiple paths between two multihomed hosts simultaneously, without any specific help from the network routers, and a subsequent grouping approach for partitioning these paths into groups. Simulation results show that the probing and grouping have an excellent performance under different network conditions.
Takatsugu HIRAYAMA Jean-Baptiste DODANE Hiroaki KAWASHIMA Takashi MATSUYAMA
People are being inundated under enormous volumes of information and they often dither about making the right choices from these. Interactive user support by information service system such as concierge services will effectively assist such people. However, human-machine interaction still lacks naturalness and thoughtfulness despite the widespread utilization of intelligent systems. The system needs to estimate user's interest to improve the interaction and support the choices. We propose a novel approach to estimating the interest, which is based on the relationship between the dynamics of user's eye movements, i.e., the endogenous control mode of saccades, and machine's proactive presentations of visual contents. Under a specially-designed presentation phase to make the user express the endogenous saccades, we analyzed the timing structures between the saccades and the presentation events. We defined resistance as a novel time-delay feature representing the duration a user's gaze remains fixed on the previously presented content regardless of the next event. In experimental results obtained from 10 subjects, we confirmed that resistance is a good indicator for estimating the interest of most subjects (75% success in 28 experiments on 7 subjects). This demonstrated a higher accuracy than conventional estimates of interest based on gaze duration or frequency.
Yohei HASEGAWA Masahiro JIBIKI
Topology information has become more important for management of LANs due to the increasing number of hosts attached to a LAN. We describe three Ethernet topology discovery techniques that can be used even in LANs with Ethernet switches that have no management functionality. Our "Shared Switch Detection (SSD)" technique detects the Ethernet tree topology by testing whether two paths in the network share a switch. SSD uses only general MAC address learning. By borrowing MAC addresses from hosts, SSD can be run from a single host. The second technique determines whether two paths between two pairs of hosts contain a switch. The third reduces the number of shared switch detections. Simulation showed that these techniques can be used to detect the Ethernet topology with a reasonable search cost. Examination on a real-world testbed showed that they could detect an Ethernet topology consisting of six hosts and two switches within one second.
Mitsuya FUKAZAWA Masanori KURIMOTO Rei AKIYAMA Hidehiro TAKATA Makoto NAGATA
Logical operations in CMOS digital integration are highly prone to fail as the amount of power supply (PS) drop approaches to failure threshold. PS voltage variation is characterized by built-in noise monitors in a 32-bit microprocessor of 90-nm CMOS technology, and related with operation failures by instruction-level programming for logical failure analysis. Combination of voltage drop size and activated logic path determines failure sensitivity and class of failures. Experimental observation as well as simplified simulation is applied for the detailed understanding of the impact of PS noise on logical operations of digital integrated circuits.
The wireless streaming media communications are fragile to the delay jitter because the conditions and requirements vary frequently with the users' mobility. Buffering is a typical way to reduce the delay jitter of media packets before the playback, however, it will incur a longer end-to-end delay. Our motivation in this paper is to improve the balance between the elimination of delay jitter and the decrease of end-to-end delay. We propose a novel adaptive playback buffer (APB) based on the probing scheme. By utilizing the probing scheme, the instantaneous network situations are collected, and then the delay margin and the delay jitter margin are employed to calculate the step length (sl) which is used to adjust the playback buffer in each time. The adaptive adjustment to the playback buffer in APB enables the continuous and real-time representation of streaming media at the receiver. Unlike the previous studies, the novelty and contributions of the paper are: a) Accuracy: by employing the instantaneous network information, the adjustment to the playback buffer correctly reflects the current network situations and therefore achieves the improved balance between the elimination of delay jitter and the decrease of end-to-end delay; Hence, APB adjustment is accurate in terms of improving such balance; b) Efficiency: by utilizing the simple probing scheme, APB achieves the current network situations without the complex mathematic predictions, which enables the adjustment to be more timely and efficient. Performance data obtained through extensive simulations show that our APB is effective to reduce both delay jitter and playback buffer delay.
Zongkai YANG Chunhui LE Jianhua HE Chun Tung CHOU Wei LIU
To guarantee QoS for multicast transmission, admission control for multicast sessions is expected. Probe-based multicast admission control (PBMAC) scheme is a scalable and simple approach. However, PBMAC suffers from the subsequent request problem which can significantly reduce the maximum number of multicast sessions that a network can admit. In this letter, we describe the subsequent request problem and propose an enhanced PBMAC scheme to solve this problem. The enhanced scheme makes use of complementary probing and remarking which require only minor modification to the original scheme. By using a fluid-based analytical model, we are able to prove that the enhanced scheme can always admit a higher number of multicast sessions. Furthermore, we present validation of the analytical model using packet based simulation.
Wenbin LUO Gregory L. HEILEMAN
The chaotic property of a new open addressing hash function, called exponential hashing, is presented. Our analysis indicates the connection between ergodic theory and hashing. Based on that, concepts from ergodic theory are applied to predict the performance of exponential hashing. Experimental results are presented to verify our theoretic analysis and the prediction.
Recent advances in measurement techniques for microwave active devices and circuits are reviewed in this paper. The R&D activities have been devoted aggressively how to characterize nonlinear performance of high power devices and circuits. They are pulsed I-V, a variety of load-pull measurements, probing, sampling, and sensing techniques, supported by the recent significant advances in DSP (Digital Signal Processing), RF components, semiconductor devices, etc. The recent advances in vector network analyzers are of our great interest. They are (a) multi-port vector network analyzers for characterizing mixers, differential devices, packaged components, electronic package characterization, and multi-layer transmission lines, and (b) EO (Electro-Optic) modulated vector network analyzers for characterizing electronic performance of EO devices with the aid of EO modulators and photonic probes. In addition, probing, sampling, and sensing techniques have made great progress to directly measure electromagnetic field, time-domain voltage waveform, and temperature in small spot areas. In this paper, some topics related to these measurement techniques are briefly reviewed. Then the existing and future issues for characterization and measurement techniques of microwave active devices and circuits are discussed.
John F. WHITAKER Kyoung YANG Ronald REANO Linda P. B. KATEHI
This review paper addresses an emerging aspect of the relationship between optics and microwave electronics: the application of short pulses of laser light to the sensing and measurement of continuous-wave microwave fields. In particular, very short duration optical pulses can take on the role of ultrafast sampling gates within the framework of the electro-optic sampling technique in order to realize unprecedented temporal resolution, measurement bandwidth, and probing flexibility. As a result, in numerous instances electro-optic sampling has been demonstrated, primarily within the research laboratory, to be an effective tool in the field of diagnostic testing and the determination of the electrical characteristics of microwave components. Recently, with the emergence of new applications such as microwave electric-field mapping in wireless and radar environments, and as the ultrafast time domain has gained in importance for the area of optical telecommunications, added attention has been directed to electro-optic sampling. Herein, an abbreviated historical perspective of the history of electro-optic field mapping is presented, along with the fundamental concepts that are utilized in the technique. The effectiveness of an optical-fiber-mounted electro-optic probe in a scanning electric-field-mapping system is highlighted in several diagnostic measurements on microwave and millimeter-wave antenna arrays, and a combined electric-field and thermal-imaging capability is also introduced.
Taek-Kyung LEE Se-Yun KIM Jung-Woong RA
The capability of frequency-swept cross-borehole radar to detect an empty rectangular cylinder embedded in a dielectric medium is simulated numerically by employing the boundary element method. The frequency loci providing the strongest double dips in the received signal pattern are plotted as functions of the observation distance and the cross-sectional width. It is found that, regardless of the shape of the rectangular cross-section, the strongest double dips become double nulls in the near-field region.
Hironori TAKAHASHI Shin-ichiro AOSHIMA Kazuhiko WAKAMORI Isuke HIRANO Yutaka TSUCHIYA
While Electro-Optic (E-O) sampling has achived the electric signal measurement with advantages of noninvasive, noncontact and ultrafast time resolution, it is unsuitable for measuring long logic patterns in fast ICs under the functional test conditions. To overcome this problem, a real time E-O probing using a continuous wave (CW) diode laser and a fast photodetector has been developed. By adopting a ZnTe E-O probe having a half-wave voltage of 3.6 kV, shot noise limited measurement with a frequency bandwidth of 480 MHz has been achieved using a low noise diode laser (wavelength of 780 nm, output power of 30 mW), a pin photodiode, a wideband low noise amplifier, and a digital oscilloscope having 500 MHz bandwidth as a waveform analyzer. The minimum detectable voltage was 23 mV under 700 times integration. In this paper, discussion of the voltage sensitivity of real time E-O probing is included. Key parameters for attaining the highly sensitive real time E-O probing are the sensitivity of the E-O probe and noises of the probing light and detection system.
Toru SATO Kenya TAKADA Toshio WAKAYAMA Iwane KIMURA Tomoyuki ABE Tetsuya SHINBO
We developed an automatic data processing algorithm for a ground-probing radar which is essential in analyzing a large amount of data by a non-expert. Its aim is to obtain an optimum result that the conventional technique can give, without the assistance of an experienced operator. The algorithm is general except that it postulates the existence of at least one isolated target in the radar image. The raw images of underground objects are compressed in the vertical and the horizontal directions by using a pulse-compression filter and the aperture synthesis technique, respectively. The test function needed to configure the compression filter is automatically selected from the given image. The sensitivity of the compression filter is adjusted to minimize the magnitude of spurious responses. The propagation velocity needed to perform the aperture synthesis is determined by fitting a hyperbola to the selected echo trace. We verified the algorithm by applying it to the data obtained at two test sites with different magnitude of clutter echoes.
Recent developments and case studies regarding VLSI device chip failure analysis are reviewed. The key failure analysis techniques reviewed include EMMS (emission microscopy), OBIC (optical beam induced current), LCM (liquid crystal method), EBP (electron beam probing), and FIB (focused ion beam method). Further, future possibilities in failure analysis, and some promising new tools are introduced.
New focused ion beam (FIB) methods for microscopic cross-sectioning and observation, microscopic crosssectioning and elemental analysis, and aluminum film microstructure observation are presented. The new methods are compared to the conventional methods and the conventional FIB methods, from the four viewpoints such as easiness of analysis, analysis time, spatial resolution, and pinpointing precision. The new FIB methods, as a result, are shown to be the best ones totally judging from the viewpoints shown above.
We propose a method of diagnosing any logical fault in combinational circuits through a repetition of the single fault-net location procedure with the aid of probing, called SIFLAP-G. The basic idea of the method has been obtained through an observation that a single error generated on a fault-net often propagates to primary outputs under an individual test even though multiple fault-nets exist in the circuit under test. Therefore, candidates for each fault-net are first deduced by the erroneous path tracing under the single fault-net assumption and then the fault-net is found out of those candidates by probing. Probing internal nets is done only for some of the candidates, so that it is possible to greatly decrease the number of nets to be probed. Experimental results show that the number seems nearly proportional to the number of fault-nets (about 35 internal nets per fault-net), but almost independent of the type of faults and the circuit size.
WEN Xiaoqing Noriyoshi ITAZAKI Kozo KINOSHITA
To speed up a guided-probe diagnosis process, the number of probed lines needs to be reduced. This paper presents two efficient probing line determination methods by which the number of probed lines is either small or minimum. The concept of fault probability is introduced to reflect the fact that not all gates have the same probability to be faulty. Experimental results show the effectiveness of the proposed methods.