The search functionality is under construction.

Keyword Search Result

[Keyword] resonator(233hit)

1-20hit(233hit)

  • Analysis of Optical Power Splitter with Resonator Structure Constructed by Two-Dimensional MDM Plasmonic Waveguide Open Access

    Yoshihiro NAKA  Masahiko NISHIMOTO  Mitsuhiro YOKOTA  

     
    BRIEF PAPER-Electromagnetic Theory

      Pubricized:
    2023/12/07
      Vol:
    E107-C No:5
      Page(s):
    141-145

    An efficient optical power splitter constructed by a metal-dielectric-metal plasmonic waveguide with a resonator structure has been analyzed. The method of solution is the finite difference time domain (FD-TD) method with the piecewise linear recursive convolution (PLRC) method. The resonator structure consists of input/output waveguides and a narrow waveguide with a T-junction. The power splitter with the resonator structure is expressed by an equivalent transmission-line circuit. We can find that the transmittance and reflectance calculated by the FD-TD method and the equivalent circuit are matched when the difference in width between the input/output waveguides and the narrow waveguide is small. It is also shown that the transmission wavelength can be adjusted by changing the narrow waveguide lengths that satisfy the impedance matching condition in the equivalent circuit.

  • A Capacitance Varying Charge Pump with Exponential Stage-Number Dependence and Its Implementation by MEMS Technology

    Menghan SONG  Tamio IKEHASHI  

     
    PAPER-Electronic Circuits

      Pubricized:
    2023/06/26
      Vol:
    E107-C No:1
      Page(s):
    1-11

    A novel charge pump, Capacitance Varying Charge Pump (CVCP) is proposed. This charge pump is composed of variable capacitors and rectifiers, and the charge transfer is attained by changing the capacitance values in a manner similar to peristaltic pumps. The analysis of multi-stage CVCP reveals that the output voltage is exponentially dependent on the stage number. Thus, compared with the Dickson charge pump, this charge pump has an advantage in generating high voltages with small stages. As a practical example of CVCP, we present an implementation realized by a MEMS (Micro-Electro-Mechanical Systems) technology. Here, the variable capacitor is enabled by a comb-capacitor attached to a high-quality factor resonator. As the rectifier, a PN-junction diode formed in the MEMS layer is used. Simulations including the mechanical elements are carried out for this MEMS version of CVCP. The simulation results on the output voltage and load characteristics are shown to coincide well with the theoretical estimations. The MEMS CVCP is suited for MEMS devices and vibration energy harvesters.

  • Mg Ion Plasma Generated by a High Magnetic Field in a Microwave Resonator

    Satoshi FUJII  Jun FUKUSHIMA  Hirotsugu TAKIZAWA  

     
    PAPER

      Pubricized:
    2023/04/19
      Vol:
    E106-C No:11
      Page(s):
    707-712

    The generation and reduction reaction of magnesium plasma were studied using a cylindrical transverse magnetic-mode applicator in magnetic and electric field modes. By heating Mg powder using the magnetic field mode, plasma was generated with the evaporation of Mg and stably sustained. When the Mg plasma sample was introduced into the reaction zone and exposed to microwave and lamp heating, a reduction reaction of scandium oxide also occurred. The results of this study provide prospects for the development of a larger microwave refining system.

  • A Tunable Dielectric Resonator Oscillator with Phase-Locked Loop Stabilization for THz Time Domain Spectroscopy Systems

    Robin KAESBACH  Marcel VAN DELDEN  Thomas MUSCH  

     
    BRIEF PAPER

      Pubricized:
    2023/05/10
      Vol:
    E106-C No:11
      Page(s):
    718-721

    Precision microwave measurement systems require highly stable oscillators with both excellent long-term and short-term stability. Compared to components used in laboratory instruments, dielectric resonator oscillators (DRO) offer low phase noise with greatly reduced mechanical complexity. To further enhance performance, phase-locked loop (PLL) stabilization can be used to eliminate drift and provide precise frequency control. In this work, the design of a low-cost DRO concept is presented and its performance is evaluated through simulations and measurements. An open-loop phase noise of -107.2 dBc/Hz at 10 kHz offset frequency and 12.8 GHz output frequency is demonstrated. Drift and phase noise are reduced by a PLL, so that a very low jitter of under 29.6 fs is achieved over the entire operating bandwidth.

  • Theoretical and Experimental Analysis of the Spurious Modes and Quality Factors for Dual-Mode AlN Lamb-Wave Resonators

    Haiyan SUN  Xingyu WANG  Zheng ZHU  Jicong ZHAO  

     
    PAPER-Ultrasonic Electronics

      Pubricized:
    2022/08/10
      Vol:
    E106-C No:3
      Page(s):
    76-83

    In this paper, the spurious modes and quality-factor (Q) values of the one-port dual-mode AlN lamb-wave resonators at 500-1000 MHz were studied by theoretical analysis and experimental verification. Through finite element analysis, we found that optimizing the width of the lateral reflection boundary at both ends of the resonator to reach the quarter wavelength (λ/4), which can improve its spectral purity and shift its resonant frequency. The designed resonators were micro-fabricated by using lithography processes on a 6-inch wafer. The measured results show that the spurious mode can be converted and dissipated, splitting into several longitudinal modes by optimizing the width of the lateral reflection boundary, which are consistent well with the theoretical analysis. Similarly, optimizing the interdigital transducer (IDT) width and number of IDT fingers can also suppress the resonator's spurious modes. In addition, it is found that there is no significant difference in the Qs value for the two modes of the dual-mode resonator with the narrow anchor and full anchor. The acoustic wave leaked from the anchor into the substrate produces a small displacement, and the energy is limited in the resonator. Compared to the resonator with Au IDTs, the resonator with Al IDTs can achieve a higher Q value due to its lower thermo-elastic damping loss. The measured results show the optimized dual-mode lamb-wave resonator can obtain Qs value of 2946.3 and 2881.4 at 730.6 MHz and 859.5 MHz, Qp values of 632.5 and 1407.6, effective electromechanical coupling coefficient (k2eff) of 0.73% and 0.11% respectively, and has excellent spectral purity simultaneously.

  • Analysis of Optical Resonator Constructed by Two-Dimensional MDM Plasmonic Waveguide

    Yoshihiro NAKA  Masahiko NISHIMOTO  Mitsuhiro YOKOTA  

     
    BRIEF PAPER-Electromagnetic Theory

      Pubricized:
    2022/09/08
      Vol:
    E106-C No:3
      Page(s):
    103-106

    An efficient bent waveguide and an optical power splitter with a resonator constructed by a metal-dielectric-metal plasmonic waveguide have been analyzed. The method of solution is the finite difference time domain (FD-TD) method with the piecewise linear recursive convolution (PLRC) method. The resonator can be realized by utilizing impedance mismatch at the connection between a narrow waveguide and an input/output waveguide. Numerical results for the bent waveguide show that transmission bands can be controlled by adjusting the length of the narrow waveguide. We have also shown that the optical power of the power splitter is entirely distributed into the output waveguide at the resonant wavelength and its distribution ratio can be controlled.

  • Aperture-Shared Multi-Port Waveguide Antenna with Rectangular Dielectric Resonator for 5G Applications

    Purevtseren BAYARSAIKHAN  Ryuji KUSE  Takeshi FUKUSAKO  Kazuma TOMIMOTO  Masayuki MIYASHITA  Ryo YAMAGUCHI  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2022/06/29
      Vol:
    E106-B No:1
      Page(s):
    57-64

    An aperture-shared multi-port waveguide antenna with multiple feeds is presented in this paper. The antenna consists of sequentially rotated four traditional WR-28 waveguides at 28GHz so as to create a multi-polarized function with decoupling between the ports. In addition, a rectangular DR (Dielectric resonator) is mounted at the center of the four apertures to obtain lower mutual coupling over a wide band and to suppress the cross-polarization in the antenna boresight direction. The proposed antenna achieves high gain of 14.4dBi, low mutual coupling of ≤-20dB on average, sufficient cross-polarization discrimination level at ≃20dB in the 27-29GHz frequency band.

  • Design of a Compact Triple-Mode Dielectric Resonator BPF with Wide Spurious-Free Performance Open Access

    Fan LIU  Zhewang MA  Weihao ZHANG  Masataka OHIRA  Dongchun QIAO  Guosheng PU  Masaru ICHIKAWA  

     
    PAPER

      Pubricized:
    2022/03/30
      Vol:
    E105-C No:11
      Page(s):
    660-666

    A novel compact 5-pole bandpass filter (BPF) using two different types of resonators, one is coaxial TEM-mode resonator and the other dielectric triple-mode resonator, is proposed in this paper. The coaxial resonator is a simple single-mode resonator, while the triple-mode dielectric resonator (DR) includes one TM01δ mode and two degenerate HE11 modes. An excellent spurious performance of the BPF is obtained due to the different resonant behaviors of these two types of resonators used in the BPF. The coupling scheme of the 5-pole BPF includes two cascade triplets (CTs) which produce two transmission zeros (TZs) and a sharp skirt of the passband. Behaviors of the resonances, the inter-resonance couplings, as well as their tuning methods are investigated in detail. A procedure of mapping the coupling matrix of the BPF to its physical dimensions is developed, and an optimization of these physical dimensions is implemented to achieve best performance of the filter. The designed BPF is operated at 1.84GHz with a bandwidth of 51MHz. The stopband rejection is better than 20dB up to 9.7GHz (about 5.39×f0) except 7.85GHz. Good agreement between the designed and theoretically synthesized responses of the BPF is reached, verifying well the proposed configuration of the BPF and its design method.

  • A Multi-Layer SIW Resonator Loaded with Asymmetric E-Shaped Slot-Lines for a Miniaturized Tri-Band BPF with Low Radiation Loss

    Weiyu ZHOU  Satoshi ONO  Koji WADA  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2021/12/27
      Vol:
    E105-C No:7
      Page(s):
    349-357

    This paper proposes a novel multi-layer substrate integrated waveguide (SIW) resonator loaded with asymmetric E-shaped slot-lines and shows a tri-band band-pass filter (BPF) using the proposed structure. In the previous literature, various SIW resonators have been proposed to simultaneously solve the problems of large area and high insertion loss. Although these SIWs have a lower insertion loss than planar-type resonators using a printed circuit board, the size of these structures tends to be larger. A multi-layer SIW resonator loaded with asymmetric E-shaped slot-lines can solve the above problems and realize a tri-band BPF without increasing the size to realize further miniaturization. The theoretical design method and the structural design are shown. Moreover, the configured structure is fabricated and measured for showing the validity of the design method in this paper.

  • Effects of Lossy Mediums for Resonator-Coupled Type Wireless Power Transfer System using Conventional Single- and Dual-Spiral Resonators

    Nur Syafiera Azreen NORODIN  Kousuke NAKAMURA  Masashi HOTTA  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2021/10/18
      Vol:
    E105-C No:3
      Page(s):
    110-117

    To realize a stable and efficient wireless power transfer (WPT) system that can be used in any environment, it is necessary to inspect the influence of environmental interference along the power transmission path of the WPT system. In this paper, attempts have been made to reduce the influence of the medium with a dielectric and conductive loss on the WPT system using spiral resonators for resonator-coupled type wireless power transfer (RC-WPT) system. An important element of the RC-WPT system is the resonators because they improve resonant characteristics by changing the shape or combination of spiral resonators to confine the electric field that mainly causes electrical loss in the system as much as possible inside the resonator. We proposed a novel dual-spiral resonator as a candidate and compared the basic characteristics of the RC-WPT system with conventional single-spiral and dual-spiral resonators. The parametric values of the spiral resonators, such as the quality factors and the coupling coefficients between resonators with and without a lossy medium in the power transmission path, were examined. For the lossy mediums, pure water or tap water filled with acryl bases was used. The maximum transmission efficiency of the RC-WPT system was then observed by tuning the matching condition of the system. Following that, the transmission efficiency of the system with and without lossy medium was investigated. These inspections revealed that the performance of the RC-WPT system with the lossy medium using the modified shape spiral resonator, which is the dual-spiral resonator proposed in our laboratory, outperformed the system using the conventional single-spiral resonator.

  • Impedance Matching in High-Power Resonant-Tunneling-Diode Terahertz Oscillators Integrated with Rectangular-Cavity Resonator

    Feifan HAN  Kazunori KOBAYASHI  Safumi SUZUKI  Hiroki TANAKA  Hidenari FUJIKATA  Masahiro ASADA  

     
    BRIEF PAPER-Semiconductor Materials and Devices

      Pubricized:
    2021/01/15
      Vol:
    E104-C No:8
      Page(s):
    398-402

    This paper theoretically presents that a terahertz (THz) oscillator using a resonant tunneling diode (RTD) and a rectangular cavity, which has previously been proposed, can radiate high output power by the impedance matching between RTD and load through metal-insulator-metal (MIM) capacitors. Based on an established equivalent-circuit model, an equation for output power has been deduced. By changing MIM capacitors, a matching point can be derived for various sizes of rectangular-cavity resonator. Simulation results show that high output power is possible by long cavity. For example, a high output power of 5 mW is expected at 1 THz.

  • Magneto-Optical Microring Switch Based on Amorphous Silicon-on-Garnet Platform for Photonic Integrated Circuits Open Access

    Toshiya MURAI  Yuya SHOJI  Nobuhiko NISHIYAMA  Tetsuya MIZUMOTO  

     
    INVITED PAPER

      Pubricized:
    2020/06/05
      Vol:
    E103-C No:11
      Page(s):
    645-652

    Magneto-optical (MO) switches operate with a dynamically applied magnetic field. The MO devices presented in this paper consist of microring resonators (MRRs) fabricated on amorphous silicon-on-garnet platform. Two types of MO switches with MRRs were developed. In the first type, the switching state is controlled by an external magnetic field component included in the device. By combination of MO and thermo-optic effects, wavelength tunable operation is possible without any additional heater, and broadband switching is achievable. The other type of switch is a self-holding optical switch integrated with an FeCoB thin-film magnet. The switching state is driven by the remanence of the integrated thin-film magnet, and the state is maintained without any power supply.

  • An Approach to Identify Circulating Tumor Cell Using Ring Resonator Type of Electrode Using Oscillation Technique at Centimeter Frequency Bands Open Access

    Futoshi KUROKI  Shouta SORA  Kousei KUMAHARA  

     
    INVITED PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2020/04/09
      Vol:
    E103-C No:10
      Page(s):
    411-416

    A ring-resonator type of electrode (RRTE) has been proposed to detect the circulating tumor cell (CTC) for evaluation of the current cancer progression and malignancy in clinical applications. Main emphasis is placed on the identification sensitivity for the lossy materials that can be found in biomedical fields. At first, the possibility of the CTC detection was numerically considered to calculate the resonant frequency of the RRTE catching the CTC, and it was evident that the RRTE with the cell has the resonant frequency inherent in the cell featured by its complex permittivity. To confirm the numerical consideration, the BaTiO3 particle, whose size was similar to that of the CTC, was inserted in the RRTE instead of the CTC as a preliminary experiment. Next, the resonant frequencies of the RRTE with internal organs of the beef cattle such as liver, lung, and kidney were measured for evaluation of the lossy materials such as the CTC, and degraded Q curves were observed because the Q-factors inherent in the internal organs were usually low due to the poor loss tangents. To overcome such difficulty, the RRTE, the oscillator circuit consisting of the FET being added, was proposed to improve the identification sensitivity. Comparing the identification sensitivity of the conventional RRTE, it has been improved because the oscillation frequency spectrum inherent in an internal organ could be easily observed thanks to the oscillation condition with negative resistance. Thus, the validity of the proposed technique has been confirmed.

  • Near-Field Credit Card-Sized Chipless RFID Tags Using Higher-Order Mode Resonance Frequencies of Transmission Line Resonators

    Fuminori SAKAI  Mitsuo MAKIMOTO  Koji WADA  

     
    PAPER

      Vol:
    E103-A No:9
      Page(s):
    1001-1010

    Chipless tag systems composed of multimode stepped impedance resonators (SIRs) and a reader based on near-field electromagnetic coupling have been reported. This resonator structure has advantages including a simple design due to its symmetrical structure and good discrimination accuracy because many higher-order mode resonant frequencies can be used for identification of codes. However, in addition to the disadvantage of long resonator length, the frequency response in the tag system becomes unstable due to deterioration of the isolation between the probes because the same probe structure is used for the excitor and detector. In this paper, we propose two methods to solve these problems. One is to adopt an asymmetrical SIR structure with a short-circuited end and open-circuited end, which reduces the resonator length by half while allowing the same number of codes to be generated. The other is to improve isolation between probes by applying different magnetic field and electric field structures to the two probes for excitation and detection. We also examined assignment and identification conditions and clarified that the available number of codes for a unit tag can be more than 15 bits. It becomes clear that a 75-bit chipless tag on a credit card-sized (55×86mm) printed circuit board can be designed by integrating five unit tags.

  • 60GHz 180µW Power Consumption CMOS ASK Transmitter Using Combined On-Chip Resonator and Antenna

    Mizuki MOTOYOSHI  Suguru KAMEDA  Noriharu SUEMATSU  

     
    PAPER

      Vol:
    E102-C No:10
      Page(s):
    725-731

    In this paper, we proposed low power consumption ASK transmitter based on the direct modulated oscillator at 60GHz-band. To achieve the proposed transmitter, high power-efficient oscillator and loss less modulator are designed. Moreover combined on-chip resonator and antenna to remove the buffer amplifier of the transmitter to reduce the power consumption and size. The proposed transmitter has been fabricated in standard 65nm CMOS process. The core area is 1130µm×590µm with pads. The operation frequency is 60.4GHz. The BER of 10-6 is achieved under 50Mbps with power consumption of less than 260µW including the buffer amplifier. Using the proposed combined on-chip resonator and antenna, which need no buffer amplifier for transmitter and the power consumption is reduced to 180µW.

  • Theoretical Analysis and Experimental Verification on High-Isolation Surface-Acoustic-Wave Duplexer with On-Chip Compensation Circuit

    Masafumi IWAKI  Masanori UEDA  Yoshio SATOH  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E102-C No:10
      Page(s):
    748-755

    This paper describes the theoretical analysis and experimental verification of a new type high-isolation surface-acoustic-wave (SAW) duplexer by using a SAW on-chip compensation circuit designed to cancel the signal of the main SAW filter at an attenuation frequency band. First, a numerical analysis based on the interference of waves propagating parallel waveguides is applied to clarify the relation between the absolute improvement value of the filter's attenuation level and cancel conditions. Then, the feasibility of the SAW compensation circuit using the double mode SAW (DMS) resonator filter are studied in both a circuit simulation and experiment. As a result, a 10-30 dB attenuation improvement was achieved within a band range of several tens of MHz using electrical characteristics of the lower side slope in the DMS resonator filter, and that it agrees well with the result obtained by numerical analysis. These results are expected to be useful for current and future mobile systems wants higher receiver sensitivity.

  • Theoretical Analysis of Center Frequency and Bandwidth Tunable Resonator Employing Coupled Line and Switches

    Kunihiro KAWAI  Hiroshi OKAZAKI  Shoichi NARAHASHI  Mizuki MOTOYOSHI  Noriharu SUEMATSU  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E102-C No:8
      Page(s):
    612-621

    This paper presents a theoretical analysis of a tunable resonator using a coupled line and switches for the first time. The tunable resonator has the capability to tune its resonant frequency and bandwidth. The resonator has two suitable features on its tunable capability. The first feature is that the resonator retains its resonant frequency during bandwidth tuning. The second feature is that the on-state switch for tuning the bandwidth does not affect the insertion loss at the resonant frequency. These features are theoretically confirmed by its mathematically derived input impedance. The results from electromagnetic simulation and measurement of the fabricated tunable resonator also confirm these features. The fabricated tunable resonator changes the resonant frequency from 2.6 GHz to 6.4 GHz and bandwidth between 9% and 55%.

  • Resonant Frequency and Bandwidth Tunable Ring Resonator Using GaAs FET SPST Switches

    Kunihiro KAWAI  Hiroshi OKAZAKI  Shoichi NARAHASHI  Noriharu SUEMATSU  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E102-C No:5
      Page(s):
    388-398

    This paper presents a theoretical analysis and experimental confirmation of a tunable ring resonator that can independently change its resonant frequency and bandwidth. The tunable ring resonator comprises a ring resonator, three tunable capacitors, and switches. The resonant frequency changes according to the capacitance of tunable capacitors, and the bandwidth varies by changing the state of the switches. The unique feature of the resonator is that the resonant frequency remains steady when the bandwidth is changed. The fundamental characteristics are shown based on linear circuit simulation and electromagnetic simulation results. The resonator is fabricated using GaAs FET single-pole single-throw switches. The fabricated resonator changes the resonant frequency from 1.5 GHz to 2.0 GHz and the fractional bandwidth from 5% to 30%.

  • Near-Field Chipless RFID Tag System Using Inductive Coupling Between a Multimode Resonator and Detection Probes

    Fuminori SAKAI  Mitsuo MAKIMOTO  Koji WADA  

     
    PAPER

      Pubricized:
    2018/10/15
      Vol:
    E102-B No:4
      Page(s):
    722-731

    Chipless RFID tags that use the higher-mode resonances of a transmission line resonator are presented in this paper. We have proposed multimode stepped impedance resonators (SIRs) for this application and reported the fundamental characteristics of an experimental system composed of multimode SIRs with open-circuited ends and a near-field electromagnetic detector using capacitive coupling (electric field) probes for the detector. To improve the frequency response and widen the detection range, we introduced multimode SIRs with short-circuited ends and inductive coupling (magnetic field) probes and measured their properties. To reduce the size of the tag and reader, we examined the frequency responses and found that the optimal configuration consisted of C-shaped tags and detector probes with a spatially orthogonal arrangement. The experimental tag system showed good frequency responses, detection range, and frequency detection accuracy. In particular, the spacing between the tag resonator and the transmission line of the probe, which corresponds to the detection distance, was 5mm or more, and was at least 10 times greater than that of previously reported RFID tag systems using near-field electromagnetic coupling.

  • Composite Right-/Left-Handed Transmission Line Stub Resonators for X-Band Low Phase-Noise Oscillators

    Shinichi TANAKA  Hiroki NISHIZAWA  Kei TAKATA  

     
    PAPER

      Vol:
    E101-C No:10
      Page(s):
    734-743

    This paper describes a novel composite right-/left-handed (CRLH) transmission line (TL) stub resonator for X-band low phase-noise oscillator application. The bandpass filter type resonator composed only of microstrip components exhibits unloaded-Q exceeding that of microstrip-line resonators by engineering the dispersion relation for the CRLH TL. Two different types of stub resonator using identical and non-identical unit-cells are compared. Although the latter type was found to be superior to the former in terms of spurious frequency responses and the circuit size, care was taken to prevent the parasitic inductances distributed in the interdigital capacitors from impeding the Q-factor control capability of the resonator. The stub resonator thus optimized was applied to an 8.8-GHz SiGe HBT oscillator, which achieved a phase-noise of -134dBc/Hz at 1-MHz offset despite the modest dielectric loss tangent of the PCB laminate used as the substrate of the circuit.

1-20hit(233hit)