The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] source(799hit)

101-120hit(799hit)

  • Frequency Resource Management Based on Model Predictive Control for Satellite Communications System

    Yuma ABE  Hiroyuki TSUJI  Amane MIURA  Shuichi ADACHI  

     
    PAPER-Systems and Control

      Vol:
    E101-A No:12
      Page(s):
    2434-2445

    We propose an approach to allocate bandwidth for a satellite communications (SATCOM) system that includes the recent high-throughput satellite (HTS) with frequency flexibility. To efficiently operate the system, we manage the limited bandwidth resources available for SATCOM by employing a control method that allows the allocated bandwidths to exceed the communication demand of user terminals per HTS beam. To this end, we consider bandwidth allocation for SATCOM as an optimal control problem. Then, assuming that the model of communication requests is available, we propose an optimal control method by combining model predictive control and sparse optimization. The resulting control method enables the efficient use of the limited bandwidth and reduces the bandwidth loss and number of control actions for the HTS compared to a setup with conventional frequency allocation and no frequency flexibility. Furthermore, the proposed method allows to allocate bandwidth depending on various control objectives and beam priorities by tuning the corresponding weighting matrices. These findings were verified through numerical simulations by using a simple time variation model of the communication requests and predicted aircraft communication demand obtained from the analysis of actual flight tracking data.

  • Non-Asymptotic Bounds and a General Formula for the Rate-Distortion Region of the Successive Refinement Problem

    Tetsunao MATSUTA  Tomohiko UYEMATSU  

     
    PAPER-Shannon theory

      Vol:
    E101-A No:12
      Page(s):
    2110-2124

    In the successive refinement problem, a fixed-length sequence emitted from an information source is encoded into two codewords by two encoders in order to give two reconstructions of the sequence. One of two reconstructions is obtained by one of two codewords, and the other reconstruction is obtained by all two codewords. For this coding problem, we give non-asymptotic inner and outer bounds on pairs of numbers of codewords of two encoders such that each probability that a distortion exceeds a given distortion level is less than a given probability level. We also give a general formula for the rate-distortion region for general sources, where the rate-distortion region is the set of rate pairs of two encoders such that each maximum value of possible distortions is less than a given distortion level.

  • A Robust Algorithm for Deadline Constrained Scheduling in IaaS Cloud Environment

    Bilkisu Larai MUHAMMAD-BELLO  Masayoshi ARITSUGI  

     
    PAPER-Cloud Computing

      Pubricized:
    2018/09/18
      Vol:
    E101-D No:12
      Page(s):
    2942-2957

    The Infrastructure as a Service (IaaS) Clouds are emerging as a promising platform for the execution of resource demanding and computation intensive workflow applications. Scheduling the execution of scientific applications expressed as workflows on IaaS Clouds involves many uncertainties due to the variable and unpredictable performance of Cloud resources. These uncertainties are modeled by probability distribution functions in past researches or totally ignored in some cases. In this paper, we propose a novel robust deadline constrained workflow scheduling algorithm which handles the uncertainties in scheduling workflows in the IaaS Cloud environment. Our proposal is a static scheduling algorithm aimed at addressing the uncertainties related to: the estimation of task execution times; and, the delay in provisioning computational Cloud resources. The workflow scheduling problem was considered as a cost-optimized, deadline-constrained optimization problem. Our uncertainty handling strategy was based on the consideration of knowledge of the interval of uncertainty, which we used to modeling the execution times rather than using a known probability distribution function or precise estimations which are known to be very sensitive to variations. Experimental evaluations using CloudSim with synthetic workflows of various sizes show that our proposal is robust to fluctuations in estimates of task runtimes and is able to produce high quality schedules that have deadline guarantees with minimal penalty cost trade-off depending on the length of the interval of uncertainty. Scheduling solutions for varying degrees of uncertainty resisted against deadline violations at runtime as against the static IC-PCP algorithm which could not guarantee deadline constraints in the face of uncertainty.

  • A Unified Approach to Error Exponents for Multiterminal Source Coding Systems

    Shigeaki KUZUOKA  

     
    PAPER-Shannon theory

      Vol:
    E101-A No:12
      Page(s):
    2082-2090

    Two kinds of problems - multiterminal hypothesis testing and one-to-many lossy source coding - are investigated in a unified way. It is demonstrated that a simple key idea, which is developed by Iriyama for one-to-one source coding systems, can be applied to multiterminal source coding systems. In particular, general bounds on the error exponents for multiterminal hypothesis testing and one-to-many lossy source coding are given.

  • Studying the Cost and Effectiveness of OSS Quality Assessment Models: An Experience Report of Fujitsu QNET

    Yasutaka KAMEI  Takahiro MATSUMOTO  Kazuhiro YAMASHITA  Naoyasu UBAYASHI  Takashi IWASAKI  Shuichi TAKAYAMA  

     
    PAPER-Software Engineering

      Pubricized:
    2018/08/08
      Vol:
    E101-D No:11
      Page(s):
    2744-2753

    Nowadays, open source software (OSS) systems are adopted by proprietary software projects. To reduce the risk of using problematic OSS systems (e.g., causing system crashes), it is important for proprietary software projects to assess OSS systems in advance. Therefore, OSS quality assessment models are studied to obtain information regarding the quality of OSS systems. Although the OSS quality assessment models are partially validated using a small number of case studies, to the best of our knowledge, there are few studies that empirically report how industrial projects actually use OSS quality assessment models in their own development process. In this study, we empirically evaluate the cost and effectiveness of OSS quality assessment models at Fujitsu Kyushu Network Technologies Limited (Fujitsu QNET). To conduct the empirical study, we collect datasets from (a) 120 OSS projects that Fujitsu QNET's projects actually used and (b) 10 problematic OSS projects that caused major problems in the projects. We find that (1) it takes average and median times of 51 and 49 minutes, respectively, to gather all assessment metrics per OSS project and (2) there is a possibility that we can filter problematic OSS systems by using the threshold derived from a pool of assessment metrics. Fujitsu QNET's developers agree that our results lead to improvements in Fujitsu QNET's OSS assessment process. We believe that our work significantly contributes to the empirical knowledge about applying OSS assessment techniques to industrial projects.

  • End-to-End Redundancy and Maintenance Condition Design for Nationwide Optical Transport Network

    Yoshihiko UEMATSU  Shohei KAMAMURA  Hiroshi YAMAMOTO  Aki FUKUDA  Rie HAYASHI  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Pubricized:
    2018/05/22
      Vol:
    E101-B No:11
      Page(s):
    2267-2276

    To achieve high end-to-end availability in nationwide optical transport network across thousands of office buildings, it is important to properly make each function redundant, and execute protection switching, repair failed functions and recover redundancy to prevent multiple simultaneous failures. High redundancy leads to high system cost and high power consumption, and tight conditions for recovery leads to high maintenance cost. Therefore it is important to optimize the balance between redundancy and maintenance condition based on appropriate availability indicators. We previously proposed a resource-pool control mechanism for a nationwide optical transport network that can optimize the balance. This paper proposes an end-to-end availability evaluation scheme for a nationwide optical transport network with our mechanism, by which network operators can design the pool-resource amount of each function and the maintenance conditions for each network area properly to satisfy the end-to-end availability requirement. Although the maintenance conditions are usually discussed based on failure-recovery times, they should be discussed based on cost- or load-based volumes for this design. This paper proposes a maintenance-operation-load evaluation scheme, which derives the required number of maintenance staff members from failure-recovery times. We also discuss the design of the pool-resource amount and maintenance conditions for each network area of a nationwide network based on the proposed evaluation schemes.

  • User Satisfaction Constraint Adaptive Sleeping in 5G mmWave Heterogeneous Cellular Network

    Gia Khanh TRAN  Hidekazu SHIMODAIRA  Kei SAKAGUCHI  

     
    PAPER

      Pubricized:
    2018/04/13
      Vol:
    E101-B No:10
      Page(s):
    2120-2130

    Densification of mmWave smallcells overlaid on the conventional macro cell is considered to be an essential technology for enhanced mobile broadband services and future IoT applications requiring high data rate e.g. automated driving in 5G communication networks. Taking into account actual measurement mobile traffic data which reveal dynamicity in both time and space, this paper proposes a joint optimization of user association and smallcell base station (BS)'s ON/OFF status. The target is to improve the system's energy efficiency while guaranteeing user's satisfaction measured through e.g. delay tolerance. Numerical analyses are conducted to show the effectiveness of the proposed algorithm against dynamic traffic variation.

  • Energy Efficient Resource Allocation for Downlink Cooperative Non-Orthogonal Multiple Access Systems

    Zi-fu FAN  Qu CHENG  Zheng-qiang WANG  Xian-hui MENG  Xiao-yu WAN  

     
    LETTER-Communication Theory and Signals

      Vol:
    E101-A No:9
      Page(s):
    1603-1607

    In this letter, we study the resource allocation for the downlink cooperative non-orthogonal multiple access (NOMA) systems based on the amplifying-and-forward protocol relay transmission. A joint power allocation and amplification gain selection scheme are proposed. Fractional programming and the iterative algorithm based on the Lagrangian multiplier are used to allocate the transmit power to maximize the energy efficiency (EE) of the systems. Simulation results show that the proposed scheme can achieve higher energy efficiency compared with the minimum power transmission (MPT-NOMA) scheme and the conventional OMA scheme.

  • Hyperparameter-Free Sparse Signal Reconstruction Approaches to Time Delay Estimation

    Hyung-Rae PARK  Jian LI  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2018/01/31
      Vol:
    E101-B No:8
      Page(s):
    1809-1819

    In this paper we extend hyperparameter-free sparse signal reconstruction approaches to permit the high-resolution time delay estimation of spread spectrum signals and demonstrate their feasibility in terms of both performance and computation complexity by applying them to the ISO/IEC 24730-2.1 real-time locating system (RTLS). Numerical examples show that the sparse asymptotic minimum variance (SAMV) approach outperforms other sparse algorithms and multiple signal classification (MUSIC) regardless of the signal correlation, especially in the case where the incoming signals are closely spaced within a Rayleigh resolution limit. The performance difference among the hyperparameter-free approaches decreases significantly as the signals become more widely separated. SAMV is sometimes strongly influenced by the noise correlation, but the degrading effect of the correlated noise can be mitigated through the noise-whitening process. The computation complexity of SAMV can be feasible for practical system use by setting the power update threshold and the grid size properly, and/or via parallel implementations.

  • Feature Based Modulation Classification for Overlapped Signals

    Yizhou JIANG  Sai HUANG  Yixin ZHANG  Zhiyong FENG  Di ZHANG  Celimuge WU  

     
    LETTER-Digital Signal Processing

      Vol:
    E101-A No:7
      Page(s):
    1123-1126

    This letter proposes a novel modulation classification method for overlapped sources named LRGP involving multinomial logistic regression (MLR) and multi-gene genetic programming (MGGP). MGGP based feature engineering is conducted to transform the cumulants of the received signals into highly discriminative features and a MLR based classifier is trained to identify the combination of the modulation formats of the overlapped sources instead of signal separation. Extensive simulations demonstrate that LRGP yields superior performance compared with existing methods.

  • Dynamic Energy Efficient Virtual Link Resource Reallocation Approach for Network Virtualization Environment

    Shanming ZHANG  Takehiro SATO  Satoru OKAMOTO  Naoaki YAMANAKA  

     
    PAPER-Network

      Pubricized:
    2018/01/10
      Vol:
    E101-B No:7
      Page(s):
    1675-1684

    The energy consumption of network virtualization environments (NVEs) has become a critical issue. In this paper, we focus on reducing the data switching energy consumption of NVE. We first analyze the data switching energy of NVE. Then, we propose a dynamic energy efficient virtual link resource reallocation (eEVLRR) approach for NVE. eEVLRR dynamically reallocates the energy efficient substrate resources (s-resources) for virtual links with dynamic changes of embeddable s-resources to save the data switching energy. In order to avoid traffic interruptions while reallocating, we design a cross layer application-session-based forwarding model for eEVLRR that can identify and forward each data transmission flow along the initial specified substrate data transport path until end without traffic interruptions. The results of performance evaluations show that eEVLRR not only guarantees the allocated s-resources of virtual links are continuously energy efficient to save data switching energy but also has positive impacts on virtual network acceptance rate, revenues and s-resources utilization.

  • Source-Side Detection of DRDoS Attack Request with Traffic-Aware Adaptive Threshold

    Sinh-Ngoc NGUYEN  Van-Quyet NGUYEN  Giang-Truong NGUYEN  JeongNyeo KIM  Kyungbaek KIM  

     
    LETTER-Information Network

      Pubricized:
    2018/03/12
      Vol:
    E101-D No:6
      Page(s):
    1686-1690

    Distributed Reflective Denial of Services (DRDoS) attacks have gained huge popularity and become a major factor in a number of massive cyber-attacks. Usually, the attackers launch this kind of attack with small volume of requests to generate a large volume of attack traffic aiming at the victim by using IP spoofing from legitimate hosts. There have been several approaches, such as static threshold based approach and confirmation-based approach, focusing on DRDoS attack detection at victim's side. However, these approaches have significant disadvantages: (1) they are only passive defences after the attack and (2) it is hard to trace back the attackers. To address this problem, considerable attention has been paid to the study of detecting DRDoS attack at source side. Because the existing proposals following this direction are supposed to be ineffective to deal with small volume of attack traffic, there is still a room for improvement. In this paper, we propose a novel method to detect DRDoS attack request traffic on SDN(Software Defined Network)-enabled gateways in the source side of attack traffic. Our method adjusts the sampling rate and provides a traffic-aware adaptive threshold along with the margin based on analysing observed traffic behind gateways. Experimental results show that the proposed method is a promising solution to detect DRDoS attack request in the source side.

  • A Direct Localization Method of Multiple Distributed Sources Based on the Idea of Multiple Signal Classification

    Yanqing REN  Zhiyu LU  Daming WANG  Jian LIU  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2017/11/16
      Vol:
    E101-B No:5
      Page(s):
    1246-1256

    The Localization of distributed sources has attracted significant interest recently. There mainly are two types of localization methods which are able to estimate distributed source positions: two-step methods and direct localization methods. Unfortunately, both fail to exploit the location information and so suffer a loss in localization accuracy. By utilizing the information not used in the above, a direct localization method of multiple distributed sources is proposed in this paper that offers improved location accuracy. We construct a direct localization model of multiple distributed sources and develop a direct localization estimator with the theory of multiple signal classification. The distributed source positions are estimated via a three-dimensional grid search. We also provide Cramer-Rao Bound, computational complexity analysis and Monte Carlo simulations. The simulations demonstrate that the proposed method outperforms the localization methods above in terms of accuracy and resolution.

  • Energy-Efficient Resource Management in Mobile Cloud Computing

    Xiaomin JIN  Yuanan LIU  Wenhao FAN  Fan WU  Bihua TANG  

     
    PAPER-Energy in Electronics Communications

      Pubricized:
    2017/10/16
      Vol:
    E101-B No:4
      Page(s):
    1010-1020

    Mobile cloud computing (MCC) has been proposed as a new approach to enhance mobile device performance via computation offloading. The growth in cloud computing energy consumption is placing pressure on both the environment and cloud operators. In this paper, we focus on energy-efficient resource management in MCC and aim to reduce cloud operators' energy consumption through resource management. We establish a deterministic resource management model by solving a combinatorial optimization problem with constraints. To obtain the resource management strategy in deterministic scenarios, we propose a deterministic strategy algorithm based on the adaptive group genetic algorithm (AGGA). Wireless networks are used to connect to the cloud in MCC, which causes uncertainty in resource management in MCC. Based on the deterministic model, we establish a stochastic model that involves a stochastic optimization problem with chance constraints. To solve this problem, we propose a stochastic strategy algorithm based on Monte Carlo simulation and AGGA. Experiments show that our deterministic strategy algorithm obtains approximate optimal solutions with low algorithmic complexity with respect to the problem size, and our stochastic strategy algorithm saves more energy than other algorithms while satisfying the chance constraints.

  • Multiple Speech Source Separation with Non-Sparse Components Recovery by Using Dual Similarity Determination

    Maoshen JIA  Jundai SUN  Feng DENG  Junyue SUN  

     
    PAPER-Elemental Technologies for human behavior analysis

      Pubricized:
    2018/01/19
      Vol:
    E101-D No:4
      Page(s):
    925-932

    In this work, a multiple source separation method with joint sparse and non-sparse components recovery is proposed by using dual similarity determination. Specifically, a dual similarity coefficient is designed based on normalized cross-correlation and Jaccard coefficients, and its reasonability is validated via a statistical analysis on a quantitative effective measure. Thereafter, by regarding the sparse components as a guide, the non-sparse components are recovered using the dual similarity coefficient. Eventually, a separated signal is obtained by a synthesis of the sparse and non-sparse components. Experimental results demonstrate the separation quality of the proposed method outperforms some existing BSS methods including sparse components separation based methods, independent components analysis based methods and soft threshold based methods.

  • QoS Guaranteed Power and Sub-Carrier Allocation for Uplink OFDMA Networks

    Guowei LI  Qinghai YANG  Kyung Sup KWAK  

     
    PAPER-Network

      Pubricized:
    2017/10/16
      Vol:
    E101-B No:4
      Page(s):
    1021-1028

    The widespread application of mobile electronic devices has triggered a boom in energy consumption, especially in user equipment (UE). In this paper, we investigate the energy-efficiency (EE) of a UE experiencing the worst channel conditions, which is termed worst-EE. Due to the limited battery of the mobile equipment, worst-EE is a suitable metric for EE fairness optimization in the uplink transmissions of orthogonal frequency division multiple access (OFDMA) networks. More specifically, we determine the optimal power and sub-carrier allocation to maximize the worst-EE with respect to UEs' transmit power, sub-carriers and statistical quality-of-service (QoS). In order to maximize the worst-EE, we formulate a max-min power and sub-carrier allocation problem, which involves nonconvex fractional mixed integer nonlinear programming, i.e., NP-hard to solve. To solve the problem, we first relax the allocation of sub-carriers, formulate the upper bound problem on the original one and prove the quasi-concave property of objective function. With the aid of the Powell-Hestenes-Rockfellar (PHR) approach, we propose a fairness EE sub-carrier and power allocation algorithm. Finally, simulation results demonstrate the advantages of the proposed algorithm.

  • Blind Source Separation and Equalization Based on Support Vector Regression for MIMO Systems

    Chao SUN  Ling YANG  Juan DU  Fenggang SUN  Li CHEN  Haipeng XI  Shenglei DU  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2017/08/28
      Vol:
    E101-B No:3
      Page(s):
    698-708

    In this paper, we first propose two batch blind source separation and equalization algorithms based on support vector regression (SVR) for linear time-invariant multiple input multiple output (MIMO) systems. The proposed algorithms combine the conventional cost function of SVR with error functions of classical on-line algorithm for blind equalization: both error functions of constant modulus algorithm (CMA) and radius directed algorithm (RDA) are contained in the penalty term of SVR. To recover all sources simultaneously, the cross-correlations of equalizer outputs are included in the cost functions. Simulation experiments show that the proposed algorithms can recover all sources successfully and compensate channel distortion simultaneously. With the use of iterative re-weighted least square (IRWLS) solution of SVR, the proposed algorithms exhibit low computational complexity. Compared with traditional algorithms, the new algorithms only require fewer samples to achieve convergence and perform a lower residual interference. For multilevel signals, the single algorithms based on constant modulus property usually show a relatively high residual error, then we propose two dual-mode blind source separation and equalization schemes. Between them, the dual-mode scheme based on SVR merely requires fewer samples to achieve convergence and further reduces the residual interference.

  • A Bayesian Game to Estimate the Optimal Initial Resource Demand for Entrant Virtual Network Operators

    Abu Hena Al MUKTADIR  Ved P. KAFLE  Pedro MARTINEZ-JULIA  Hiroaki HARAI  

     
    PAPER

      Pubricized:
    2017/09/19
      Vol:
    E101-B No:3
      Page(s):
    667-678

    Network virtualization and slicing technologies create opportunity for infrastructure-less virtual network operators (VNOs) to enter the market anytime and provide diverse services. Multiple VNOs compete to provide the same kinds of services to end users (EUs). VNOs lease virtual resources from the infrastructure provider (InP) and sell services to the EUs by using the leased resources. The difference between the selling and leasing is the gross profit for the VNOs. A VNO that leases resources without precise knowledge of future demand, may not consume all the leased resources through service offers to EUs. Consequently, the VNO experiences loss and resources remain unused. In order to improve resource utilization and ensure that new entrant VNOs do not face losses, proper estimation of initial resource demand is important. In this paper, we propose a Bayesian game with Cournot oligopoly model to properly estimate the optimal initial resource demands for multiple entrant competing VNOs (players) with the objective of maximizing the expected profit for each VNO. The VNOs offer the same kinds of services to EUs with different qualities (player's type), which are public information. The exact service quality with which a VNO competes in the market is private information. Therefore, a VNO assumes the type of its opponent VNOs with certain probability. We derive the Bayesian Nash equilibrium (BNE) of the presented game and evaluate numerically the effect of service qualities and prices on the expected profit and market share of the VNOs.

  • Extraction of Library Update History Using Source Code Reuse Detection

    Kanyakorn JEWMAIDANG  Takashi ISHIO  Akinori IHARA  Kenichi MATSUMOTO  Pattara LEELAPRUTE  

     
    LETTER-Software Engineering

      Pubricized:
    2017/12/20
      Vol:
    E101-D No:3
      Page(s):
    799-802

    This paper proposes a method to extract and visualize a library update history in a project. The method identifies reused library versions by comparing source code in a product with existing versions of the library so that developers can understand when their own copy of a library has been copied, modified, and updated.

  • Optimal Transmission Policy in Decoupled RF Energy Harvesting Networks

    Yu Min HWANG  Jun Hee JUNG  Yoan SHIN  Jin Young KIM  Dong In KIM  

     
    LETTER-Digital Signal Processing

      Vol:
    E101-A No:2
      Page(s):
    516-520

    In this letter, we study a scenario based on decoupled RF energy harvesting networks (DRF-EHNs) that separate energy sources from information sources to overcome the doubly near-far problem and improve harvesting efficiency. We propose an algorithm to maximize energy efficiency (EE) while satisfying constraints on the maximum transmit power of the hybrid access point (H-AP) and power beacon (PB), while further satisfying constraints on the minimum quality of service and minimum amount of harvested power in multi-user Rayleigh fading channel. Using nonlinear fractional programming and Lagrangian dual decomposition, we optimize EE with four optimization arguments: the transmit power from the H-AP and PB, time-splitting ratio, and power-splitting ratio. Numerical results show that the proposed algorithm is more energy-efficient compared to baseline schemes.

101-120hit(799hit)