The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] symmetric(201hit)

161-180hit(201hit)

  • Congestion Control Mechanism for TCP with Packet Pair Scheme

    Yoshifumi NISHIDA  Osamu NAKAMURA  Jun MURAI  

     
    PAPER

      Vol:
    E82-D No:4
      Page(s):
    854-862

    Congestion Control Scheme of TCP/IP protocol suite is established by Transmission Control Protocol (TCP). Using the self-clocking scheme, TCP is able to maintain a quick optimum connection status for the network path, unless it is given an excessive load to carry to the network. However, in wide area networks, there are some obstructive factors for the self-clocking scheme of TCP. In this paper, we describe the obstructive factors for the self-clocking scheme. We propose a new congestion control scheme using a packet pair scheme and a traffic-shaping scheme. In combining these schemes with TCP, new TCP options and a modification for TCP congestion control algorithms are added. Using our scheme, TCP is able to maintain smooth self-clocking. We implemented this scheme on a network simulator for evaluation. Compared with normal TCP, this scheme was demonstrated to be over 20% more efficient in symmetric communication and over 40% more efficient in asymmetric communication.

  • Unbiased Estimation of Symmetric Noncausal ARMA Parameters Using Lattice Filter

    Md. Mohsin MOLLAH  Takashi YAHAGI  

     
    LETTER-Digital Signal Processing

      Vol:
    E82-A No:3
      Page(s):
    543-547

    An unbiased estimation method for symmetric noncausal ARMA model parameters is presented. The proposed algorithm works in two steps: first, a spectrally equivalent causal system is identified by lattice whitening filter and then the equivalent noncausal system is reconstructed. For AR system with noise or ARMA system without noise, the proposed method does not need any iteration method nor any optimization procedure. An estimation method of noise variance when the observation is made in noisy situation is discussed. The potential capabilities of the algorithm are demonstrated by using some numerical examples.

  • All-Optical NRZ-to-Inverted-RZ Converter with Extinction Ratio Enhancement Using a Modified Terahertz Optical Asymmetric Demultiplexer

    Hyuek Jae LEE  Kwangjoon KIM  Jee Yon CHOI  Hae-Geun KIM  Chu Hwan YIM  

     
    LETTER-Photonic Switching Devices

      Vol:
    E82-B No:2
      Page(s):
    387-389

    To enhance the extinction ratio (ER) of NRZ-to-inverted-RZ converter based on cross-gain compression of a semiconductor optical amplifier (SOA), a modified terahertz optical asymmetric demultiplexer (TOAD) is cascaded. ER is improved from 1.6-6.7 dB to 5.4-14.5 dB, depending on the intensity of input optical NRZ signal. The proposed NRZ-to-inverted-RZ converter enhances and regulates ER to a high value (14.5 dB) for very wide optical NRZ signal intensity range.

  • All-Optical NRZ-to-Inverted-RZ Converter with Extinction Ratio Enhancement Using a Modified Terahertz Optical Asymmetric Demultiplexer

    Hyuek Jae LEE  Kwangjoon KIM  Jee Yon CHOI  Hae-Geun KIM  Chu Hwan YIM  

     
    LETTER-Photonic Switching Devices

      Vol:
    E82-C No:2
      Page(s):
    335-337

    To enhance the extinction ratio (ER) of NRZ-to-inverted-RZ converter based on cross-gain compression of a semiconductor optical amplifier (SOA), a modified terahertz optical asymmetric demultiplexer (TOAD) is cascaded. ER is improved from 1.6-6.7 dB to 5.4-14.5 dB, depending on the intensity of input optical NRZ signal. The proposed NRZ-to-inverted-RZ converter enhances and regulates ER to a high value (14.5 dB) for very wide optical NRZ signal intensity range.

  • Restructuring Logic Representations with Simple Disjunctive Decompositions

    Hiroshi SAWADA  Shigeru YAMASHITA  Akira NAGOYA  

     
    PAPER-Logic Synthesis

      Vol:
    E81-A No:12
      Page(s):
    2538-2544

    Simple disjunctive decomposition is a special case of logic function decompositions, where variables are divided into two disjoint sets and there is only one newly introduced variable. It offers an optimal structure for a single-output function. This paper presents two techniques that enable us to apply simple disjunctive decompositions with little overhead. Firstly, we propose a method to find symple disjunctive decomposition forms efficiently by limiting decomposition types to be found to two: a decomposition where the bound set is a set of symmetric variables and a decomposition where the output function is a 2-input function. Secondly, we propose an algorithm that constructs a new logic representation for a simple disjunctive decomposition just by assigning constant values to variables in the original representation. The algorithm enables us to apply the decomposition with keeping good structures of the original representation. We performed experiments for decomposing functions and confirmed the efficiency of our method. We also performed experiments for restructuring fanout free cones of multi-level logic circuits, and obtained better results than when not restructuring them.

  • A Precision Solution to Symmetrical Inductive Discontinuities of Finite Thickness in the Parallel-Plate Waveguides Using the Modified Residue-Calculus Method

    Toshihiko SHIBAZAKI  Teruhiro KINOSHITA  

     
    PAPER

      Vol:
    E81-C No:12
      Page(s):
    1807-1813

    The problem of electromagnetic scattering caused by inductive discontinuities locate in parallel-plate waveguides, in particular when dealing with discontinuous conductors of finite thickness, is analyzed using the modified residue-calculus method, the equations suitable for a numerical calculation are derived. The incident wave is taken to be the dominant mode, and the reflection and transmission properties of a symmetrical inductive iris are discussed.

  • The Two-Dimensional Lapped Hadamard Transform

    Shogo MURAMATSU  Akihiko YAMADA  Hitoshi KIYA  

     
    PAPER

      Vol:
    E81-A No:8
      Page(s):
    1542-1549

    In this paper, a two-dimensional (2-D) binary-valued (BV) lapped transform (LT) is proposed. The proposed LT has basis images which take only BV elements and satisfies the axial-symmetric (AS) property. In one dimension, there is no 2-point LT with the symmetric basis vectors, and the property is achieved only with the non-overlapping basis which the Hadamard transform (HT) has. Hence, in two dimension, there is no 22-point separable ASLT, and only 2-D HT can be the 22-point separable AS orthogonal transform. By taking non-separable BV basis images, this paper shows that a 22-point ASLT can be obtained. Since the proposed LT is similar to HT, it is referred to as the lapped Hadamard transform (LHT). LHT of larger size is shown to be provided with a tree structure. In addition, LHT is shown to be efficiently implemented by a lattice structure.

  • Low Bit-rate Video Coding Using a DSP for Consumer Applications

    Hisashi INOUE  Shiro IWASAKI  Takashi KATSURA  Hitoshi FUJIMOTO  Shun-ichi KUROHMARU  Masatoshi MATSUO  Yasuo KOHASHI  Masayoshi TOUJIMA  Tomonori YONEZAWA  Kiyoshi OKAMOTO  Yasuo IIZUKA  Hiromasa NAKAJIMA  Junji MICHIYAMA  

     
    PAPER

      Vol:
    E81-C No:5
      Page(s):
    708-717

    We have developed a low bit-rate video coding using a video digital signal processor (DSP) called VDSP1χ, which performs real-time encoding and decoding for discrete cosine transform-(DCT-) based algorithms, such as ITU-T H. 261, H. 263 and wavelet-based subband encoding algorithms. This LSI features a processing unit which implements wavelet filters at high speeds, a compact DCT circuit, and a fast, flexible DRAM interface for low-cost systems. This system is capable of processing quarter common intermediate format (QCIF)(176144 pixels) size pictures at a rate greater than 15 frames/s.

  • A New Class of Single Error-Correcting Fixed Block-Length (d, k) Codes

    Hatsukazu TANAKA  

     
    PAPER-Coding Theory

      Vol:
    E80-A No:11
      Page(s):
    2052-2057

    In this paper a new class of single error-correcting fixed block-length (d, k) codes has been proposed. The correctable error types are peak-shift error, insertion or deletion error, symmetric error, etc. The basic technique to construct codes is a systematic construction algorithm of multilevel sequences with a constant Lee weight (TALG algorithm). The coding rate and efficiency are considerably good, and hence the proposed new codes will be very useful for improving the reliability of high density magnetic recording.

  • Modified Antisymmetric M Sequence and Its Periodic Correlation Property

    Shinji TSUZUKI  Susumu YOSHIDA  Saburo TAZAKI  Yoshio YAMADA  

     
    PAPER-Communications/Coded Modulation/Spread Spectrum

      Vol:
    E80-A No:11
      Page(s):
    2180-2191

    In this paper we discuss the binary spreading sequences whose spectral distributions are DC free and spectral distribution's shapes can be easily controlled by a certain parameter denoted by δ. The newly developed sequences, referred to as modified antisymmetric M-sequences, are modified-versions of the conventional antisymmetric (AS)M-sequences. The proposed sequences are designed to increase the varieties of spectral distribution's shapes and improve the correlation properties when compared to those of the FM coded M-sequences which have already proposed by Tsuzuki et al. Some typical line coded M-sequences, i.e. the (differential) Manchester coded M-sequences and the FM coded M-sequences, and the conventional AS M-sequences are included in the set of proposed sequences. The improvement of the average BER (bit error rate) performance for asynchronous DS/SSMA (direct sequence/spread spectrum multiple access) systems using the proposed sequences in comparison to the system using the conventional AO/LSE (auto-optimal phase with least sidelobe energy) M-sequences is also shown.

  • Function of Nonlinear Asymmetrical Neural Networks

    Naohiro ISHII  

     
    PAPER

      Vol:
    E80-A No:9
      Page(s):
    1604-1609

    Nonlinearity is an important factor in the biological neural networks. The motion perception and learning in them have been studied on the simplest type of nonlinearity, multiplication. In this paper, asymmetrical neural networks with nonlinear function, are studied in the biological neural networks. Then, the nonlinear higher-order system is discussed in the neural networks. The second-order system in the nonlinear biological system is shown to play an important role in the movement detection. From the theoretical analysis, it is shown that the third-order one does not contribute to the detection and the fourth-order one becomes to the second-order in the movement detection function. Hassenstein and Reichardt network (1956) and Barlow and Levick network (1965) of movements are similar to the asymmetrical network developed here. To make clear the difference among these asymmetrical networks, we derive α-equation of movement, which shows the detection of movement. During the movement, we also can derive the movement equation, which implies the movement direction regardless of the parameter α.

  • Absolute Exponential Stability of Neural Networks with Asymmetric Connection Matrices

    Xue-Bin LIANG  Toru YAMAGUCHI  

     
    LETTER-Neural Networks

      Vol:
    E80-A No:8
      Page(s):
    1531-1534

    In this letter, the absolute exponential stability result of neural networks with asymmetric connection matrices is obtained, which generalizes the existing one about absolute stability of neural networks, by a new proof approach. It is demonstrated that the network time constant is inversely proportional to the global exponential convergence rate of the network trajectories to the unique equilibrium. A numerical simulation example is also given to illustrate the obtained analysis results.

  • A Note on the Complexity of k-Ary Threshold Circuits

    Shao-Chin SUNG  Kunihiko HIRAISHI  

     
    PAPER-Algorithm and Computational Complexity

      Vol:
    E80-D No:8
      Page(s):
    767-773

    Obradovic and Parberry showed that any n-input k-ary function can be computed by a depth 4 unit-weight k-ary threshold circuit of size O(nkn). They also showed that any n-input k-ary symmetric function can be computed by a depth 6 unit-weight k-ary threshold circuit of size O(nk+1). In this paper, we improve upon and expand their results. The k-ary threshold circuits of nonunit weight and unit weight are considered. We show that any n-input k-ary function can be computed by a depth 2 k-ary threshold circuit of size O(kn-1). This means that depth 2 is optimal for computing some k-ary functions (e.g., a PARITY function). We also show that any n-input k-ary function can be computed by a depth 3 unit-weight k-ary threshold circuit of size O(kn). Next, we show that any n-input k-ary symmetric function can be computed by a depth 3 k-ary threshold circuit of size O(nk-1), and can be computed by a depth 3 unit-weight k-ary threshold circuit of size O(knk-1). Finally, we show that if the weights of the circuit are polynomially bounded, some k-ary symmetric functions cannot be computed by any depth 2 k-ary threshold circuit of polynomial-size.

  • Generating Functions for Asymmetric/Unidirectional Error Correcting and Detecting Codes

    Ching-Nung YANG  Chi-Sung LAIH  

     
    PAPER-Information Theory and Coding Theory

      Vol:
    E80-A No:6
      Page(s):
    1135-1142

    Constantin and Rao have given a method for constructing single asymmetric error correcting (SAEC) codes based on the theory of the Abelian group, This paper uses the method of generating function in combinatorics to solve the implementation problems of the SAEC group theoretic codes. The encoding and decoding algorithms of the coding scheme perform simple arithmetic operations recursively. The idea of generating function can also be applied to t symmetric errors and simultaneously detect all unidirectional errors (t-syEC/AUED) codes for 1t3.

  • Bifurcation Phenomena of Harmonic Oscillations in Three-Phase Circuit

    Takashi HISAKADO  Kohshi OKUMURA  

     
    PAPER-Nonlinear Problems

      Vol:
    E80-A No:6
      Page(s):
    1127-1134

    This paper presents the several bifurcation phenomena of harmonic oscillations occurred in nonlinear three-phase circuit. The circuit consists of delta-connected nonlinear inductors, capacitors and three-phase symmetrical voltage sources. We analyze the bifurcations of the oscillations by the homotopy method. Additionally, we confirm the bifurcation phenomena by real experiments. Furthermore, we reveal the effect of nonlinear couplings of inductors by the comparison of harmonic oscillations in a single-phase circuit.

  • Minimization of AND-EXOR Expressions for Symmetric Functions

    Takashi HIRAYAMA  Yasuaki NISHITANI  Kensuke SHIMIZU  

     
    LETTER

      Vol:
    E80-A No:3
      Page(s):
    567-570

    This paper deals with minimization of ESOPs (exclusive-or sum-of-products) which represent symmetric functions. Se propose an efficient simplification algorithm for symmetric functions, which guarantees the minimality for some subclass of symmetric functions, and present the minimum ESOPs for all 6-variable symmetric functions.

  • Necessary and Sufficient Condition for Liveness of Asymmetric Choice Petri Nets

    Tadashi MATSUMOTO  Yasuhiko TSURUTA  

     
    PAPER

      Vol:
    E80-A No:3
      Page(s):
    521-533

    Petri net is a graphical and mathematical tool for modelling, analysis, verification, and evaluation of discrete event systems. Liveness is one of the most important problems of Petri net analysis. This is concerned with a capability for firing of transitions and can be interpreted as a problem to decide whether the system under consideration is always able to reach a stationary behavior, or to decide whether the system is free from any redundant elements. An asymmetric choice (AC) net is a superclass of useful subclasses such as EFCs, FCs, SMs, and MGs, where SMs admit no synchronization, MGs admit no conflicts, FCs as well as EFCs admit no confusion, and ACs allow asymmetric confusion but disallow symmetric confusion. It is known that an AC net N is live iff it is place-live, but this is not the "initial-marking-based" condition and place-liveness is in general hard to test. For the initial-marking-based liveness for AC nets, it is only known that an AC net N is live if (but not only if) every deadlock in N contains a marked structural trap.

  • Some Characteristics of Higher Order Neural Networks with Decreasing Energy Functions

    Hiromi MIYAJIMA  Shuji YATSUKI  Michiharu MAEDA  

     
    PAPER-Neural Nets and Human Being

      Vol:
    E79-A No:10
      Page(s):
    1624-1629

    This paper describes some dynamical properties of higher order neural networks with decreasing energy functions. First, we will show that for any symmetric higher order neural network which permits only one element to transit at each step, there are only periodic sequences with the length 1. Further, it will be shown that for any higher order neural network, with decreasing energy functions, which permits all elements to transit at each step, there does not exist any periodic sequence with the length being over k + 1, where k is the order of the network. Lastly, we will give a characterization for higher order neural networks, with the order 2 and a decreasing energy function each, which permit plural elements to transit at each step and have periodic sequences only with the lengh 1.

  • Optimal Bandwidth Reservation for Circuit Groups Handling Asymmetric Multi-Connection Calls

    Hajime NAKAMURA  Toshikane ODA  

     
    PAPER-Communication Networks and Services

      Vol:
    E79-B No:6
      Page(s):
    816-825

    This paper is concerned with bandwidth reservation for circuit groups which handle calls requesting asymmetric forward and backward multi-connections. A model of circuit group with sub-group configuration is treated, and two types of the bandwidth reservation schemes for the model are studied in this paper. One is a global scheme with monitoring the whole circuit group, and the other is a local scheme with monitoring each sub-group independently. The problems of optimizing the reservation parameters are formulated, and optimization methods for the problems are proposed. Numerical example are presented, and effectiveness of the reservation schemes with using the optimized parameters is numerically examined.

  • One Simple Approach for Radial Symmetrical Point Detection

    Hiroshi KONDO  Shuji TUTUMI  Satoshi MIKURIYA  

     
    LETTER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E79-D No:4
      Page(s):
    388-391

    A simple and convenient approach for a radial symmetrical point detection is proposed. In this paper the real part-only synthesis is utilized in order to make an origin symmetric pattern of the original image and to perform automatically the calculation of its autocorrelation for the detection of the symmetry center of the image.

161-180hit(201hit)