The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] symmetric(201hit)

61-80hit(201hit)

  • Experiments on Asymmetric Carrier Aggregation Associated with Control Signaling Reception Quality in LTE-Advanced

    Keisuke SAITO  Yuichi KAKISHIMA  Teruo KAWAMURA  Yoshihisa KISHIYAMA  Hidekazu TAOKA  Hidehiro ANDOH  

     
    PAPER-Communication Theory and Signals

      Vol:
    E96-A No:11
      Page(s):
    2106-2113

    LTE-Advanced supports asymmetric carrier aggregation (CA) to achieve flexible bandwidth allocation by applying different numbers of component carriers (CCs) between the downlink and uplink. This paper experimentally clarifies the achievable downlink throughput performance when uplink control information (UCI) feedback mechanism using the physical uplink shared channel (PUSCH), which enables minimization of the UCI overhead while maintaining the required reception quality, is applied in asymmetric CA. The laboratory experimental results show that the stable reception quality control of the channel quality information (CQI) with the target block error rate (BLER) of 10-1 to 10-2 is achieved irrespective of the average received signal-to-noise power ratio (SNR) when the control offset parameter of approximately 1.25 is used. We also show that the achievable downlink throughput when the CQI error is considered is almost the same as that in no CQI error case. Furthermore, based on the experimental results in a real field environment, a suburban area of Yokosuka city in Japan, we confirm stable adaptive modulation and coding (AMC) operation including target BLER control of the CQI on the PUSCH in asymmetric CA. The field experimental results also show that when CA with 5 CCs (90-MHz bandwidth) and 2-by-2 rank-2 multiple-output multiple-input (MIMO) multiplexing are employed in the downlink, the peak throughput of approximately 640Mbps is achieved even considering the CQI error.

  • Extension of Methods for Constructing Polyphase Asymmetric ZCZ Sequence Sets

    Hideyuki TORII  Takahiro MATSUMOTO  Makoto NAKAMURA  

     
    PAPER-Coding Theory

      Vol:
    E96-A No:11
      Page(s):
    2244-2252

    The present paper proposes two new methods for constructing polyphase asymmetric zero-correlation zone (A-ZCZ) sequence sets. In previous studies, the authors proposed methods for constructing quasi-optimal polyphase A-ZCZ sequence sets using perfect sequences and for constructing optimal polyphase A-ZCZ sequence sets using discrete Fourier transform (DFT) matrices. However, in these methods, the total number of sequences in an A-ZCZ sequence set cannot exceed the period of the perfect sequence or the dimension of the DFT matrix used for constructing the A-ZCZ sequence set. We now propose two extended versions of these methods. The proposed methods can generate a quasi-optimal or optimal polyphase A-ZCZ sequence set where the total number of sequences exceeds the period of the perfect sequence or the dimension of the DFT matrix. In other words, the proposed methods can generate new A-ZCZ sequence sets that cannot be obtained from the known methods.

  • Neighborhood Level Error Control Codes for Multi-Level Cell Flash Memories

    Shohei KOTAKI  Masato KITAKAMI  

     
    PAPER

      Vol:
    E96-D No:9
      Page(s):
    1926-1932

    NAND Flash memories are widely used as data storages today. The memories are not intrinsically error free because they are affected by several physical disturbances. Technology scaling and introduction of multi-level cell (MLC) has improved data density, but it has made error effect more significant. Error control codes (ECC) are essential to improve reliability of NAND Flash memories. Efficiency of codes depends on error characteristic of systems, and codes are required to be designed to reflect this characteristic. In MLC Flash memories, errors tend to direct values to neighborhood. These errors are a class of M-ary asymmetric symbol error. Some codes which reflect the asymmetric property were proposed. They are designed to correct only 1 level shift errors because almost all of the errors in the memories are in such errors. But technology scaling, increase of program/erase (P/E) cycles, and MLC storing the large number of bits can cause multiple-level shift. This paper proposes single error control codes which can correct an error of more than 1 levels shift. Because the number of levels to be corrected is selectable, we can fit it into noise magnitude. Furthermore, it is possible to add error detecting function for error of the larger shift. Proposed codes are equivalent to a conventional integer codes, which can correct 1 level shift, on a certain parameter. Therefore, the codes are said to be generalization of conventional integer codes. Evaluation results show information lengths to respective check symbol lengths are larger than nonbinary Hamming codes and other M-ary asymmetric symbol error correcting codes.

  • Construction and Counting of 1-Resilient Rotation Symmetric Boolean Functions on pq Variables

    Jiao DU  Qiaoyan WEN  Jie ZHANG  Shanqi PANG  

     
    LETTER-Cryptography and Information Security

      Vol:
    E96-A No:7
      Page(s):
    1653-1656

    In this letter, a property of the characteristic matrix of the Rotation Symmetric Boolean Functions (RSBFs) is characterized, and a sufficient and necessary condition for RSBFs being 1st correlation-immune (1-CI for simplicity) is obtained. This property is applied to construct resilient RSBFs of order 1 (1-resilient for simplicity) on pq variables, where p and q are both prime consistently in this letter. The results show that construction and counting of 1-resilient RSBFs on pq variables are equivalent to solving an equation system and counting the solutions. At last, the counting of all 1-resilient RSBFs on pq variables is also proposed.

  • A Computing Method for Linear Convolution and Linear Correlation in the DCT Domain

    Izumi ITO   

     
    PAPER-Digital Signal Processing

      Vol:
    E96-A No:7
      Page(s):
    1518-1525

    We propose a computing method for linear convolution and linear correlation between sequences using discrete cosine transform (DCT). Zero-padding is considered as well as linear convolution using discrete Fourier transform (DFT). Analyzing the circular convolution between symmetrically extended sequences, we derive the condition for zero-padding before and after the sequences. The proposed method can calculate linear convolution for any filter and also calculate linear correlation without reversing one of the input sequences. The computational complexity of the proposed method is lower than that of linear convolution using DFT.

  • Outage Capacity of Spectrum Sharing Cognitive Radio with MRC Diversity and Outdated CSI under Asymmetric Fading

    Ding XU  Zhiyong FENG  Ping ZHANG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E96-A No:3
      Page(s):
    732-736

    Spectrum sharing cognitive radio (CR) with maximal ratio combining (MRC) diversity under asymmetric fading is studied. Specifically, the channel on the secondary transmitter (STx) to the secondary receiver (SRx) link is Nakagami-m distributed while the channel on the STx to the primary receiver (PRx) link is Rayleigh distributed, and the channel state information (CSI) on the STx-PRx link is assumed to be outdated due to feedback delay. The outage capacity of the secondary user (SU) is derived under the average interference and peak transmit power constraints. The results supported by simulations are presented and show the effects of various system parameters on the outage capacity. Particularly, it is shown that the outdated CSI has no impact on the outage capacities in the cases of low peak transmit power constraint and zero-outage probability. It is also shown that MRC diversity can significantly improve the outage capacity especially for the zero-outage capacity and the outage capacity under low outage probability.

  • On the Balanced Elementary Symmetric Boolean Functions

    Longjiang QU  Qingping DAI  Chao LI  

     
    LETTER-Cryptography and Information Security

      Vol:
    E96-A No:2
      Page(s):
    663-665

    In this paper, we give some results towards the conjecture that σ2t+1l-1,2t are the only nonlinear balanced elementary symmetric Boolean functions where t and l are positive integers. At first, a unified and simple proof of some earlier results is shown. Then a property of balanced elementary symmetric Boolean functions is presented. With this property, we prove that the conjecture is true for n=2m+2t-1 where m,t (m>t) are two non-negative integers, which verified the conjecture for a large infinite class of integer n.

  • Performance Analysis of Hermite-Symmetric Subcarrier Coding for OFDM Systems over Fading Channels

    Fumihito SASAMORI  Shiro HANDA  

     
    PAPER-Communication Theory and Signals

      Vol:
    E95-A No:12
      Page(s):
    2461-2469

    Orthogonal frequency division multiplexing (OFDM) has great advantages such as high spectrum efficiency and robustness against multipath fading. In order to enhance the advantages, an Hermite-symmetric subcarrier coding for OFDM, which is used for transmission systems like the asymmetric digital subscriber line (ADSL) and multiband OFDM in ultra-wideband (UWB) communications, is very attractive. The subcarrier coding can force the imaginary part of the OFDM signal to be zero, then another data sequence can be simultaneously transmitted in the quadrature channel. In order to theoretically verify the effectiveness of the Hermite-symmetric subcarrier coding in wireless OFDM (HC-OFDM) systems, we derive closed-form equations for bit error rate (BER) and throughput over fading channels. Our analytical results can theoretically indicate that the HC-OFDM systems achieve the improvement of the performances owing to the effect of the subcarrier coding.

  • Analysis of Error Floors for Non-binary LDPC Codes over General Linear Group through q-Ary Memoryless Symmetric Channels

    Takayuki NOZAKI  Kenta KASAI  Kohichi SAKANIWA  

     
    PAPER-Coding Theory

      Vol:
    E95-A No:12
      Page(s):
    2113-2121

    In this paper, we compare the decoding error rates in the error floors for non-binary low-density parity-check (LDPC) codes over general linear groups with those for non-binary LDPC codes over finite fields transmitted through the q-ary memoryless symmetric channels under belief propagation decoding. To analyze non-binary LDPC codes defined over both the general linear group GL(m, F2) and the finite field F2m, we investigate non-binary LDPC codes defined over GL(m3, F2m4). We propose a method to lower the error floors for non-binary LDPC codes. In this analysis, we see that the non-binary LDPC codes constructed by our proposed method defined over general linear group have the same decoding performance in the error floors as those defined over finite field. The non-binary LDPC codes defined over general linear group have more choices of the labels on the edges which satisfy the condition for the optimization.

  • Zero-Cross-Correlation Properties of Asymmetric ZCZ Sequence Sets

    Kosuke OMATA  Hideyuki TORII  Takahiro MATSUMOTO  

     
    LETTER-Sequences

      Vol:
    E95-A No:11
      Page(s):
    1926-1930

    Recently, asymmetric zero-correlation zone (A-ZCZ) sequence sets that are composed of several sequence subsets have been proposed. In A-ZCZ sequence sets, the zero-cross-correlation zone (ZCCZ) length between different sequence subsets is larger than the zero-correlation zone (ZCZ) length in each sequence subset. However, the ZCCZ length between different sequence subsets was not precisely shown in previous studies. The present letter shows precisely the ZCCZ length between different sequence subsets. This information is useful for estimating the magnitude of inter-cell interference when designing approximately synchronized code-division multiple-access (AS-CDMA) systems.

  • An Identity-Based Secure Distributed Routing Protocol for Wireless Mesh Networks

    Ren Junn HWANG  Yu-Kai HSIAO  

     
    PAPER

      Vol:
    E95-B No:9
      Page(s):
    2718-2727

    This study proposes an efficient identity-based secure routing protocol based on Weil pairing, that considers symmetric and asymmetric links for Wireless Mesh Networks (WMNs). A wireless mesh network is a group of wireless mesh routers and several types of wireless devices (or nodes). Individual nodes cooperate by forwarding packets to each other, allowing nodes to communicate beyond the symmetric or asymmetric links. Asymmetric communication is a special feature of WMNs because of the wireless transmission ranges of different wireless devices may be different. The asymmetric link enhances WMN coverage. Ensuring security in WMNs has become an important issue over the last few years. Existing research on this topic tends to focus on providing security for routing and data content in the symmetric link. However, most studies overlook the asymmetric link in WMNs. This study proposes a novel distributed routing protocol that considers symmetric and asymmetric links. The proposed protocol guarantees the security and high reliability of the established route in a hostile environment, such as WMNs, by avoiding the use of unreliable intermediate nodes. The routes generated by the proposed protocol are shorter than those in prior studies. The major objective of the proposed protocol is to allow trustworthy intermediate nodes to participate in the path construction protocol. Using the proposed protocol, mesh clients out of mesh router wireless transmission range may discover a secure route to securely connect to the mesh router for Internet access. The proposed protocol enhances wireless mesh network coverage and assures security.

  • A New Method for Constructing Asymmetric ZCZ Sequence Sets

    Hideyuki TORII  Takahiro MATSUMOTO  Makoto NAKAMURA  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E95-A No:9
      Page(s):
    1577-1586

    The present paper proposes a new method for constructing polyphase asymmetric zero-correlation zone (A-ZCZ) sequence sets. The proposed method can generate A-ZCZ sequence sets that cannot be obtained from methods proposed by other researchers and is a generalized version of our previously proposed method. An A-ZCZ sequence set can be regarded as a ZCZ sequence set. The newly obtained A-ZCZ sequence sets include quasi-optimal ZCZ sequence sets of which the zero-cross-correlation zone (ZCCZ) length between different sequence subsets is larger than the mathematical upper bound of conventional ZCZ sequence sets. A new method for extending the A-ZCZ sequence sets is also presented in the present paper.

  • Beam Tilting Slot Antenna Elements with a Forced Resonance by Reactance Loading

    Ki-Chai KIM  Kazuhiro HIRASAWA  

     
    PAPER-Antennas and Propagation

      Vol:
    E95-B No:8
      Page(s):
    2610-2618

    This paper presents the basic characteristics of a beam tilting slot antenna element whose forced resonance is realized by reactance loading; its structure complements that of a dipole antenna element. The radiation pattern is tilted using a properly determined driving point position; a single loading reactance is used to obtain the forced resonance without great changes in the tilt angle. Numerical results show that the reactance element needs to be loaded near the driving point in order to obtain the forced resonance of the antenna and the minimum changes in the beam tilt angle at the same time. When the proposed forced resonant beam tilting slot antenna with a 0.8 λ length is driven at -0.2 λ from the center, the main beam tilt angle of 57.7 degrees and the highest power gain of 3.8 dB are obtained. This slot element has a broad bandwidth, unlike the complementary dipole element.

  • Constructing Rotation Symmetric Boolean Functions with Maximum Algebraic Immunity on an Odd Number of Variables

    Jie PENG  Haibin KAN  

     
    PAPER-Cryptography and Information Security

      Vol:
    E95-A No:6
      Page(s):
    1056-1064

    It is well known that Boolean functions used in stream and block ciphers should have high algebraic immunity to resist algebraic attacks. Up to now, there have been many constructions of Boolean functions achieving the maximum algebraic immunity. In this paper, we present several constructions of rotation symmetric Boolean functions with maximum algebraic immunity on an odd number of variables which are not symmetric, via a study of invertible cyclic matrices over the binary field. In particular, we generalize the existing results and introduce a new method to construct all the rotation symmetric Boolean functions that differ from the majority function on two orbits. Moreover, we prove that their nonlinearities are upper bounded by .

  • Symmetric Extension DFT-Based Noise Variance Estimator in OFDMA Systems with Partial Frequency Response

    Yi WANG  Qianbin CHEN  Ken LONG  Zu Fan ZHANG  Hong TANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:6
      Page(s):
    2157-2159

    A simple DFT-based noise variance estimator for orthogonal frequency division multiplexing access (OFDMA) systems is proposed. The conventional DFT-based estimator differentiates the channel impulse response and noise in the time domain. However, for partial frequency response, its time domain signal will leak to all taps due to the windowing effect. The noise and channel leakage power become mixed. In order to accurately derive the noise power, we propose a novel symmetric extension method to reduce the channel leakage power. This method is based on the improved signal continuity at the boundaries introduced by symmetric extension. Numerical results show that the normalized mean square error (NMSE) of our proposed method is significantly lower than that of the conventional DFT method.

  • Opportunistic Scheduling for Hybrid Network Coding and Cooperative Relaying Techniques in Wireless Networks Open Access

    Lin SHAN  Hidekazu MURATA  Sonia AISSA  Susumu YOSHIDA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E95-B No:5
      Page(s):
    1751-1760

    With the purpose of improving the performance of next generation wireless networks, cooperative relaying (CoR) and network coding (NC) are promising techniques. The number of time slots required for NC in bidirectional transmission is less than that required for CoR, and hence, NC can achieve higher throughput performance than CoR. However, the disadvantage of NC is that asymmetric traffic ratio conditions might cause a significant decrease in the bidirectional throughput. In contrast, CoR is robust to asymmetric traffic ratio conditions. In this paper, in order to improve the throughput of NC even under asymmetric traffic ratio conditions, we propose an opportunistic scheduling scheme for hybrid NC and CoR. In the proposed scheduling scheme, the transmission protocol with best throughput performance can be adaptively selected based on instantaneous channel state information. Computer simulation results reveal that the proposed scheduling scheme not only achieve higher throughput than the conventional scheduling scheme but is also robust against asymmetric traffic ratio conditions. By adjusting the scheduler's parameter, the proposed scheduling scheme can provide a tradeoff between the throughput and the traffic ratio. Moreover, in certain cases, maximizing the throughput of NC and guaranteeing the offered traffic ratio can be achieved at the same time.

  • Analysis of Operation Margin and Read Speed in 6T- and 8T-SRAM with Local Electron Injected Asymmetric Pass Gate Transistor

    Kousuke MIYAJI  Kentaro HONDA  Shuhei TANAKAMARU  Shinji MIYANO  Ken TAKEUCHI  

     
    PAPER

      Vol:
    E95-C No:4
      Page(s):
    564-571

    Three types of electron injection scheme: both side injection scheme and self-repair one side injection scheme Type A (injection for once) and Type B (injection for twice) are proposed and analyzed comprehensively for 65 nm technology node 6T- and 8T-SRAM cells to find the optimum injection scheme and cell architecture. It is found that the read speed degrades by as much as 6.3 times in the 6T-SRAM with the local injected electrons. However, the read speed of the 8T-SRAM cell does not degrade because the read port is separated from the write pass gate transistors. Furthermore, the self-repair one side injection scheme is most suitable to solve the conflict of the half select disturb and write characteristics. The worst cell characteristics of Type A and Type B self-repair one side injection schemes were found to be the same. In the self-repair one side injection 8T-SRAM, the disturb margin increases by 141% without write margin or read speed degradation. The proposed schemes have no process or area penalty compared with the standard CMOS-process.

  • A 24 dB Gain 51–68 GHz Common Source Low Noise Amplifier Using Asymmetric-Layout Transistors

    Ning LI  Keigo BUNSEN  Naoki TAKAYAMA  Qinghong BU  Toshihide SUZUKI  Masaru SATO  Yoichi KAWANO  Tatsuya HIROSE  Kenichi OKADA  Akira MATSUZAWA  

     
    PAPER

      Vol:
    E95-A No:2
      Page(s):
    498-505

    At mm-wave frequency, the layout of CMOS transistors has a larger effect on the device performance than ever before in low frequency. In this work, the distance between the gate and drain contact (Dgd) has been enlarged to obtain a better maximum available gain (MAG). By using the asymmetric-layout transistor, a 0.6 dB MAG improvement is realized when Dgd changes from 60 nm to 200 nm. A four-stage common-source low noise amplifier is implemented in a 65 nm CMOS process. A measured peak power gain of 24 dB is achieved with a power dissipation of 30 mW from a 1.2-V power supply. An 18 dB variable gain is also realized by adjusting the bias voltage. The measured 3-dB bandwidth is about 17 GHz from 51 GHz to 68 GHz, and noise figure (NF) is from 4.0 dB to 7.6 dB.

  • Transmission Performance of Space Time Block Coding with Grouped Phase Rotation for Asymmetric MIMO-OFDM System

    Akinori NAKAJIMA  Kenichiro TANAKA  Akinori OHASHI  Hiroshi HATTORI  Akihiro OKAZAKI  Hiroshi KUBO  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:12
      Page(s):
    3540-3549

    To improve the quality of wireless communication, transmit/receive diversity techniques in multiple-input multiple-output (MIMO) system have been investigated vigorously. In this paper, we consider an asymmetric MIMO orthogonal frequency division multiplexing (MIMO-OFDM) system, in which the number of transmit antennas is larger than that of receive antennas. In this system, there is a need to achieve the high quality of communication in both low and high mobility scenarios by a single transmit diversity scheme. Recently, as for the advanced diversity schemes based on space time block coding (STBC)/space frequency block coding (SFBC), STBC/STBC-phase shift diversity (PSD) and SFBC-frequency switched transmit diversity (FSTD) have been proposed. However, in these schemes, it is possible that time diversity gain can not be sufficiently obtained especially in the low mobility scenario. Therefore, in this paper, the joint use of grouped phase rotation in time/frequency domain and STBC (GPR-STBC) is proposed to get the larger channel coding gains than other schemes. In this paper, we evaluate the average bit error rate (BER) performance by computer simulation in a comparison with the conventional transmit diversity schemes and discuss the relationship from the viewpoints of BER performance and computational complexity.

  • Decoupled 3-D Near-Field Source Localization with UCA via Centrosymmetric Subarrays

    Bum-Soo KWON  Tae-Jin JUNG  Chang-Hong SHIN  Kyun-Kyung LEE  

     
    LETTER-Antennas and Propagation

      Vol:
    E94-B No:11
      Page(s):
    3143-3146

    A novel algorithm is presented for estimating the 3-D location (azimuth angle, elevation angle, and range) of multiple sources with a uniform circular array (UCA). Based on its centrosymmetric property, a UCA is divided into two subarrays. The steering vectors for these subarrays then yield a 2-D direction of arrival (DOA)-related rotational invariance property in the signal subspace, which enables 2-D DOA estimations using a generalized-ESPRIT algorithm. Based on the estimated 2-D DOAs, a range estimation can then be obtained for each source by defining the 1-D MUSIC spectrum. Despite its low computational complexity, the proposed algorithm can almost match the performance of the benchmark estimator 3-D MUSIC.

61-80hit(201hit)