The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] system(3183hit)

721-740hit(3183hit)

  • Anticipatory Runway Incursion Prevention Systems

    Kai SHI  Yuichi GOTO  Zhiliang ZHU  Jingde CHENG  

     
    PAPER-Artificial Intelligence, Data Mining

      Vol:
    E96-D No:11
      Page(s):
    2385-2396

    Avoiding runway incursions is a significant challenge and a top priority in aviation. Due to all causes of runway incursions belong to human factors, runway incursion prevention systems should remove human from the system operation loop as much as possible. Although current runway incursion prevention systems have made big progress on how to obtain accurate and sufficient information of aircraft/vehicles, they cannot predict and detect runway incursions as early as experienced air traffic controllers by using the same surveillance information, and cannot give explicit instructions and/or suggestions to prevent runway incursions like real air traffic controllers either. In one word, human still plays an important position in current runway incursion prevention systems. In order to remove human factors from the system operation loop as much as possible, this paper proposes a new type of runway incursion prevention system based on logic-based reasoning. The system predicts and detects runway incursions, then gives explicit instructions and/or suggestions to pilots/drivers to avoid runway incursions/collisions. The features of the system include long-range prediction of incidents, explicit instructions and/or suggestions, and flexible model for different policies and airports. To evaluate our system, we built a simulation system, and evaluated our system using both real historical scenarios and conventional fictional scenarios. The evaluation showed that our system is effective at providing earlier prediction of incidents than current systems, giving explicit instructions and/or suggestions for handling the incidents effectively, and customizing for specific policies and airports using flexible model.

  • Analytic Ldi/dt Effect Model Based on Float Ground in Plasma Display Panel Driver System

    Xiaoying HE  Weifeng SUN  Guohuan HUA  Shen XU  Shengli LU  

     
    PAPER-Electronic Displays

      Vol:
    E96-C No:11
      Page(s):
    1428-1435

    An Ldi/dt effect model based on float ground in a plamsa display panel (PDP) driver system is established in this paper. The model is to analyze the noise which appears in power supply and float ground pins of driver integrated circuits. Considering printed circuit board wiring and switching parasitic parameters, firstly Ldi/dt effect due to integrated circuits transition, is explained on the entire float-ground circuit operation. Then an analytic model is deduced and validated, and good agreement is obtained with experimental results. Based on the model, sensitivity analyses of key parameters are done. Finally, design optimisations to prevent the Ldi/dt effect based on float ground are proposed and verified in a PDP system.

  • Complexity of Strong Satisfiability Problems for Reactive System Specifications

    Masaya SHIMAKAWA  Shigeki HAGIHARA  Naoki YONEZAKI  

     
    PAPER-Fundamentals of Information Systems

      Vol:
    E96-D No:10
      Page(s):
    2187-2193

    Many fatal accidents involving safety-critical reactive systems have occurred in unexpected situations, which were not considered during the design and test phases of system development. To prevent such accidents, reactive systems should be designed to respond appropriately to any request from an environment at any time. Verifying this property during the specification phase reduces the development costs of safety-critical reactive systems. This property of a specification is commonly known as realizability. The complexity of the realizability problem is 2EXPTIME-complete. We have introduced the concept of strong satisfiability, which is a necessary condition for realizability. Many practical unrealizable specifications are also strongly unsatisfiable. In this paper, we show that the complexity of the strong satisfiability problem is EXPSPACE-complete. This means that strong satisfiability offers the advantage of lower complexity for analysis, compared to realizability. Moreover, we show that the strong satisfiability problem remains EXPSPACE-complete even when only formulae with a temporal depth of at most 2 are allowed.

  • Static Mapping of Multiple Data-Parallel Applications on Embedded Many-Core SoCs

    Junya KAIDA  Yuko HARA-AZUMI  Takuji HIEDA  Ittetsu TANIGUCHI  Hiroyuki TOMIYAMA  Koji INOUE  

     
    LETTER-Computer System

      Vol:
    E96-D No:10
      Page(s):
    2268-2271

    This paper studies the static mapping of multiple applications on embedded many-core SoCs. The mapping techniques proposed in this paper take into account both inter-application and intra-application parallelism in order to fully utilize the potential parallelism of the many-core architecture. Two approaches are proposed for static mapping: one approach is based on integer linear programming and the other is based on a greedy algorithm. Experiments show the effectiveness of the proposed techniques.

  • Implementation and Evaluation of Real-Time Distributed Zero-Forcing Beamforming for Downlink Multi-User MIMO Systems

    Tomoki MURAKAMI  Koichi ISHIHARA  Riichi KUDO  Yusuke ASAI  Takeo ICHIKAWA  Masato MIZOGUCHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:10
      Page(s):
    2521-2529

    The implementation and experimental evaluations of distributed zero-forcing beamforming (DZFBF) for downlink multi-user multiple-input multiple-output (DL MU-MIMO) systems are presented. In DZFBF, multiple access points (APs) transmit to own desired stations (STAs) at the same time and using the same frequency channel while mitigating inter-cell interference. To clarify the performance and feasibility of DZFBF, we develop a real-time transmission testbed that includes two APs and four STAs; all are implemented using field programmable gate array. For real-time transmission, we also implement a simple weight generation process based on ZF weight using channel state information which is fed back from STAs; it is an extension of the weight generation approach used in DL MU-MIMO systems. By using our testbed, we demonstrate the real-time transmission performance in actual indoor multi-cell environments. These results indicate that DL DZFBF is more effective than DL MU-MIMO with time division multiple access.

  • Behavior of a Multi-User MIMO System in Time-Varying Environments Open Access

    Yasutaka OGAWA  Kanako YAMAGUCHI  Huu Phu BUI  Toshihiko NISHIMURA  Takeo OHGANE  

     
    INVITED PAPER

      Vol:
    E96-B No:10
      Page(s):
    2364-2371

    We evaluated the behavior of a multi-user multiple-input multiple-output (MIMO) system in time-varying channels using measured data. A base station for downlink or broadcast transmission requires downlink channel state information (CSI), which is outdated in time-varying environments and we encounter degraded performance due to interference. One of the countermeasures against time-variant environments is predicting channels with an autoregressive (AR) model-based method. We modified the AR prediction for a time division duplex system. We conducted measurement campaigns in indoor environments to verify the performance of the scheme of channel prediction in an actual environment and measured channel data. We obtained the bit-error rate (BER) using these data. The AR-model-based technique of prediction assuming the Jakes' model was found to reduce BER. Also, the optimum AR-model order was investigated by using the channel data we measured.

  • Online Sparse Volterra System Identification Using Projections onto Weighted l1 Balls

    Tae-Ho JUNG  Jung-Hee KIM  Joon-Hyuk CHANG  Sang Won NAM  

     
    PAPER

      Vol:
    E96-A No:10
      Page(s):
    1980-1983

    In this paper, online sparse Volterra system identification is proposed. For that purpose, the conventional adaptive projection-based algorithm with weighted l1 balls (APWL1) is revisited for nonlinear system identification, whereby the linear-in-parameters nature of Volterra systems is utilized. Compared with sparsity-aware recursive least squares (RLS) based algorithms, requiring higher computational complexity and showing faster convergence and lower steady-state error due to their long memory in time-invariant cases, the proposed approach yields better tracking capability in time-varying cases due to short-term data dependence in updating the weight. Also, when N is the number of sparse Volterra kernels and q is the number of input vectors involved to update the weight, the proposed algorithm requires O(qN) multiplication complexity and O(Nlog 2N) sorting-operation complexity. Furthermore, sparsity-aware least mean-squares and affine projection based algorithms are also tested.

  • Nonlinear Modeling and Analysis on Concurrent Amplification of Dual-Band Gaussian Signals Open Access

    Ikuma ANDO  GiaKhanh TRAN  Kiyomichi ARAKI  Takayuki YAMADA  Takana KAHO  Yo YAMAGUCHI  Kazuhiro UEHARA  

     
    PAPER

      Vol:
    E96-C No:10
      Page(s):
    1254-1262

    In the recently developed Flexible Wireless System (FWS), the same platform needs to deal with different wireless systems. This increases nonlinear distortion in its wideband power amplifier (PA) because the PA needs to concurrently amplify multi-band signals. By taking higher harmonics as well as inter- and cross-modulation distortion into consideration, we have developed a method to analytically evaluate the adjacent channel leakage power ratio (ACPR) and error vector magnitude (EVM) on the basis of the PA's nonlinear characteristics. We devise a novel method for modeling the PA amplifying dual-band signals. The method makes it possible to model it merely by performing a one-tone test, making use of the Volterra series expansion and the general Wiener model. We then use the Mehler formula to derive the closed-form expressions of the PA's output power spectral density (PSD), ACPR, and EVM. The derivations are based on the assumption that the transmitted signals are complex Gaussian distributed in orthogonal frequency division multiplexing (OFDM) transmission systems. We validate the method by comparing measurement and simulation results and confirm it can appropriately predict the ACPR and EVM performance of the nonlinear PA output with OFDM inputs. In short, the method enables correct modeling of a wideband PA that amplifies dual-band signals merely by conducting a one-tone test.

  • Dynamic Quantization of Nonaffine Nonlinear Systems

    Shun-ichi AZUMA  Toshiharu SUGIE  

     
    PAPER-Systems and Control

      Vol:
    E96-A No:10
      Page(s):
    1993-1998

    For quantized control, one of the powerful approaches is to use a dynamic quantizer, which has internal memories for signal quantization, with a conventional controller in the feedback control loop. The design of dynamic quantizers has become a major topic, and a number of results have been derived so far. In this paper, we extend the authors' recent result on dynamic quantizers, and applied them to a more general class of nonlinear systems, called the nonaffine nonlinear systems. Based on the performance index representing the degradation caused by the signal quantization, we propose practical dynamic quantizers, which include the authors' former result as a special case. Moreover, we provide theoretical results on the performance and on the stability of the resulting quantized systems.

  • A Travel-Efficient Driving Assistance Scheme in VANETs by Providing Recommended Speed

    Chunxiao LI  Weijia CHEN  Dawei HE  Xuelong HU  Shigeru SHIMAMOTO  

     
    PAPER-Intelligent Transport System

      Vol:
    E96-A No:10
      Page(s):
    2007-2015

    Vehicles' speed is one of the key factors in vehicle travel efficiency, as speed is related to vehicle travel time, travel safety, fuel consumption, and exhaust gas emissions (e.g., CO2 emissions). Therefore, to improve the travel efficiency, a recommended speed calculation scheme is proposed to assist driving in Vehicle Ad hoc networks (VANETs) circumstances. In the proposed scheme, vehicles' current speed and space headway are obtained by Vehicle-to-Roadside unit (V2R) communication and Vehicle-to-Vehicle (V2V) communication. Based on the vehicles' current speed and adjacent vehicles' space headway, a recommended speed is calculated by on-board units installed in the vehicles, and then this recommended speed is provided to drivers. The drivers can change their speed to the recommended speed. At the recommended speed, vehicle travel efficiency can be improved: vehicles can arrive at destinations in a shorter travel time with fewer stop times, lower fuel consumption, and less CO2 emission. In particular, when approaching intersections, vehicles can pass through the intersections with less red light waiting time and a higher non-stop passing rate.

  • Synchronization of Two Different Unified Chaotic Systems with Unknown Mismatched Parameters via Sum of Squares Method

    Cheol-Joong KIM  Dongkyoung CHWA  

     
    PAPER-Nonlinear Problems

      Vol:
    E96-A No:9
      Page(s):
    1840-1847

    This paper proposes the synchronization control method for two different unified chaotic systems with unknown mismatched parameters using sum of squares method. Previously, feedback-linearizing and stabilization terms were used in the controller for the synchronization problem. However, they used just a constant matrix as a stabilization control gain, whose performance is shown to be valid only for a linear model. Thus, we propose the novel control method for the synchronization of the two different unified chaotic systems with unknown mismatched parameters via sum of squares method. We design the stabilization control input which is of the polynomial form by sum of squares method and also the adaptive law for the estimation of the unknown mismatched parameter between the master and slave systems. Since we can use the polynomial control input which is dependent on the system states as the stabilization controller, the proposed method can have better performance than the previous methods. Numerical simulations for both uni-directional and bi-directional chaotic systems show the validity and advantage of the proposed method.

  • Design a Fast CAM-Based Exact Pattern Matching System on FPGA and 0.18µm CMOS Process

    Duc-Hung LE  Katsumi INOUE  Cong-Kha PHAM  

     
    LETTER-VLSI Design Technology and CAD

      Vol:
    E96-A No:9
      Page(s):
    1883-1888

    A CAM-based matching system for fast exact pattern matching is implemented on a hardware system with FPGA and ASIC. The system has a simple structure, and does not employ any Central Processor Unit (CPU) as well as complicated computations. We take advantage of Content Addressable Memory (CAM) which has an ability of parallel multi-match mode for designing the system. The system is applied to fast pattern matching with various required search patterns without using search principles. In this paper, the authors present a CAM-based system for fast exact pattern matching on 2-D data.

  • Advanced Millimeter-Wave Radar System to Detect Pedestrians and Vehicles by Using Coded Pulse Compression and Adaptive Array

    Takaaki KISHIGAMI  Tadashi MORITA  Hirohito MUKAI  Maiko OTANI  Yoichi NAKAGAWA  

     
    PAPER-Sensing

      Vol:
    E96-B No:9
      Page(s):
    2313-2322

    This paper reports an advanced millimeter-wave radar system to enable detection of vehicles and pedestrians in wide areas around the radar site such as an intersection. We focus on a pulse coding scheme using complementary codes to reduce range sidelobe for discriminating vehicles from pedestrians with high accuracy. In order to suppress sidelobe increase created by RF circuit imperfections, a π/2 shift pulse modulation method with a complementary code pair cycle is presented. Moreover, in order to improve the angular resolution, a high-resolution direction of arrival estimation involving Tx beam scanning is presented. Experiments on a prototype confirm its range sidelobe suppression exceeds 40dB and its angular resolution is 5° for two human's separation at the distance of about 10m in an anechoic chamber. In a trial intersection experiment, a pedestrian detection rate of 95% was achieved at the false alarm rate of 10% in the range from 5m to 40m. The results prove the system's feasibility for future automotive safety application.

  • Slack Space Recycling: Delaying On-Demand Cleaning in LFS for Performance and Endurance

    Yongseok OH  Jongmoo CHOI  Donghee LEE  Sam H. NOH  

     
    PAPER-Data Engineering, Web Information Systems

      Vol:
    E96-D No:9
      Page(s):
    2075-2086

    The Log-structured File System (LFS) transforms random writes to a huge sequential one to provide superior write performance on storage devices. However, LFS inherently suffers from overhead incurred by cleaning segments. Specifically, when file system utilization is high and the system is busy, write performance of LFS degenerates significantly due to high cleaning cost. Also, in the newer flash memory based SSD storage devices, cleaning leads to reduced SSD lifetime as it incurs more writes. In this paper, we propose an enhancement to the original LFS to alleviate the performance degeneration due to cleaning when the system is busy. The new scheme, which we call Slack Space Recycling (SSR), allows LFS to delay on-demand cleaning during busy hours such that cleaning may be done when the load is much lighter. Specifically, it writes modified data directly to invalid areas (slack space) of used segments instead of cleaning on-demand, pushing back cleaning for later. SSR also has the added benefit of increasing the lifetime of the now popular SSD storage devices. We implement the new SSR-LFS file system in Linux and perform a large set of experiments. The results of these experiments show that the SSR scheme significantly improves performance of LFS for a wide range of storage utilization settings and that the lifetime of SSDs is extended considerably.

  • Fault Diagnosis and Reconfiguration Method for Network-on-Chip Based Multiple Processor Systems with Restricted Private Memories

    Masashi IMAI  Tomohiro YONEDA  

     
    PAPER

      Vol:
    E96-D No:9
      Page(s):
    1914-1925

    We propose a fault diagnosis and reconfiguration method based on the Pair and Swap scheme to improve the reliability and the MTTF (Mean Time To Failure) of network-on-chip based multiple processor systems where each processor core has its private memory. In the proposed scheme, two identical copies of a given task are executed on a pair of processor cores and the results are compared repeatedly in order to detect processor faults. If a fault is detected by mismatches, the fault is identified and isolated using a TMR (Triple Module Redundancy) and the system is reconfigured by the redundant processor cores. We propose that each task is quadruplicated and statically assigned to private memories so that each memory has only two different tasks. We evaluate the reliability of the proposed quadruplicated task allocation scheme in the viewpoint of MTTF. As a result, the MTTF of the proposed scheme is over 4.3 times longer than that of the duplicated task allocation scheme.

  • A Novel Network Modeling and Evaluation Approach for Security Vulnerability Quantification in Substation Automation Systems

    Jongbin KO  Seokjun LEE  Yong-hun LIM  Seong-ho JU  Taeshik SHON  

     
    LETTER

      Vol:
    E96-D No:9
      Page(s):
    2021-2025

    With the proliferation of smart grids and the construction of various electric IT systems and networks, a next-generation substation automation system (SAS) based on IEC 61850 has been agreed upon as a core element of smart grids. However, research on security vulnerability analysis and quantification for automated substations is still in the preliminary phase. In particular, it is not suitable to apply existing security vulnerability quantification approaches to IEC 61850-based SAS because of its heterogeneous characteristics. In this paper, we propose an IEC 61850-based SAS network modeling and evaluation approach for security vulnerability quantification. The proposed approach uses network-level and device groupings to categorize the characteristic of the SAS. In addition, novel attack scenarios are proposed through a zoning scheme to evaluate the network model. Finally, an MTTC (Mean Time-to-Compromise) scheme is used to verify the proposed network model using a sample attack scenario.

  • A Fast Power Estimation Method for Content Addressable Memory by Using SystemC Simulation Environment

    Kun-Lin TSAI  I-Jui TUNG  Feipei LAI  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E96-A No:8
      Page(s):
    1723-1729

    Content addressable memory is widely used for fast lookup table data searching, but it often consumes considerable power. Moreover, designing the suitable content addressable memory architecture for a specific application also consumes lots of time, since the behavioral simulation is often done in the transistor level. SystemC is a system-level modeling language and simulation platform, providing high simulation efficiency for hardware software co-design. Unfortunately, SystemC does not provide the function for estimating power dissipation of a structure design. In this paper, a SystemC-based fast content addressable memory power estimation method is presented for estimating the power dissipation of the match-line circuit, the search-line circuit, and the storage cell array of content addressable memory in the early design stage. The mathematical equations and behavioral patterns are used as the inputs of power estimation model. The simulation results based on 10 Mibench benchmarks show that the simulation time of the proposed method is in average 1233 times faster than that of HSPICE simulator with only 3.51% error rate.

  • Stochastic Asymptotic Stabilizers for Deterministic Input-Affine Systems Based on Stochastic Control Lyapunov Functions

    Yuki NISHIMURA  Kanya TANAKA  Yuji WAKASA  Yuh YAMASHITA  

     
    PAPER-Systems and Control

      Vol:
    E96-A No:8
      Page(s):
    1695-1702

    In this paper, a stochastic asymptotic stabilization method is proposed for deterministic input-affine control systems, which are randomized by including Gaussian white noises in control inputs. The sufficient condition is derived for the diffusion coefficients so that there exist stochastic control Lyapunov functions for the systems. To illustrate the usefulness of the sufficient condition, the authors propose the stochastic continuous feedback law, which makes the origin of the Brockett integrator become globally asymptotically stable in probability.

  • On-Line Model Parameter Estimations for Time-Delay Systems

    Jung Hun PARK  Soohee HAN  Bokyu KWON  

     
    LETTER-Fundamentals of Information Systems

      Vol:
    E96-D No:8
      Page(s):
    1867-1870

    This paper concerns a problem of on-line model parameter estimations for multiple time-delay systems. In order to estimate unknown model parameters from measured state variables, we propose two schemes using Lyapunov's direct method, called parallel and series-parallel model estimators. It is shown through a numerical example that the proposed parallel and series-parallel model estimators can be effective when sufficiently rich inputs are applied.

  • Basic Dynamics of the Digital Logistic Map

    Akio MATOBA  Narutoshi HORIMOTO  Toshimichi SAITO  

     
    LETTER-Nonlinear Problems

      Vol:
    E96-A No:8
      Page(s):
    1808-1811

    This letter studies a digital return map that is a mapping from a set of lattice points to itself. The digital map can exhibit various periodic orbits. As a typical example, we present the digital logistic map based on the logistic map. Two fundamental results are shown. When the logistic map has a unique periodic orbit, the digital map can have plural periodic orbits. When the logistic map has an unstable period-3 orbit that causes chaos, the digital map can have a stable period-3 orbit with various domain of attractions.

721-740hit(3183hit)