The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] system(3183hit)

1501-1520hit(3183hit)

  • Two-Stage Random-Access Using Two-Hop Relay for Multi-Hop Systems

    Yoichiro MIZUNO  Ryo HASEGAWA  Riaz ESMAILZADEH  Masao NAKAGAWA  

     
    PAPER-Spread Spectrum

      Vol:
    E89-A No:10
      Page(s):
    2630-2639

    Higher transmission rates are one of the main characteristics of the fourth-generation (4G*) of mobile communications. These systems are expected to operate at higher frequency bands, which experience larger propagation loss. This results in larger required transmission power, which causes several problems, particularly for uplink communications, as the typical mobile station (MS) has limited transmission power. Multi-hop systems have been proposed to address this problem. In this paper, we consider the issue of random-access (RA) in a multi-hop system. It is clear that a two-hop mobile communication system requires a two-stage RA process. In this paper, we propose a two-stage RA process that is an extension of the RA process of the CDMA-based 3GPP standard. The proposed method uses a hybrid of code division multiple access (CDMA) and Slotted-ALOHA. To realize the proposed two-hop RA, we dedicate one slot for second-hop transmissions in each interval (predefined); we refer to this as the interval slots allocation (ISsA) technique. Numerical analyses and simulations are conducted to evaluate its basic performance in a multi-hop system. The results demonstrate the superior throughput-delay performance of the proposed two-stage RA multi-hop system with ISsA.

  • A Refined Theory for Available Operation of Extremely Complicated Large-Scale Network Systems

    Kazuo HORIUCHI  

     
    PAPER-Modelling, Systems and Simulation

      Vol:
    E89-A No:10
      Page(s):
    2692-2696

    In this paper, we shall describe about a refined theory based on the concept of set-valued operators, suitable for available operation of extremely complicated large-scale network systems. The deduction of theory is accomplished in a weak topology introduced into the Banach space. Fundamental conditions for availability of system behaviors of such network systems are clarified, as a result, in a form of fixed point theorem for system of set-valued operators.

  • Self-Organizing Location Estimation Method Using Received Signal Strength

    Yasuhisa TAKIZAWA  Peter DAVIS  Makoto KAWAI  Hisato IWAI  Akira YAMAGUCHI  Sadao OBANA  

     
    PAPER

      Vol:
    E89-B No:10
      Page(s):
    2687-2695

    The location information of ubiquitous objects is one of the key issues for context-aware systems. Therefore, several positioning systems to obtain precise location information have been researched. However, they have scalability and flexibility problems because they need completely configured space with a large number of sensors. To avoid the problems, we proposed a self-organizing location estimation method that uses ad hoc networks and Self-Organizing Maps and needs no prepared space with a large number of sensors. But, as in other similar precise localization methods, the proposed method needs advanced distance measurements unavailable to conventional wireless communication systems. In this paper, the self-organizing location estimation method's modification for distance measurement that uses received signal strength available to conventional wireless communication systems but which fluctuates uncertainly, is described and location estimation accuracy with the modified method is shown.

  • Synthesis of Nonautonomous Systems with Specified Limit Cycles

    Atsuko OHNO  Toshimitsu USHIO  Masakazu ADACHI  

     
    LETTER-Oscillation, Dynamics and Chaos

      Vol:
    E89-A No:10
      Page(s):
    2833-2836

    This paper deals with a synthesis of a nonautonomous system with a stable limit cycle. We propose a synthesis method of a nonautonomous system whose transient trajectories converge to a prescribed limit cycle. We use receding horizon control to control a transient behavior of the nonautonomous system, and confirm its validity by simulation.

  • Analysis of Discretely Controlled Continuous Systems by means of Embedded Maps

    Jorg KRUPAR  Jan LUNZE  Axel SCHILD  Wolfgang SCHWARZ  

     
    PAPER-Modelling, Systems and Simulation

      Vol:
    E89-A No:10
      Page(s):
    2697-2705

    Discretely controlled continuous systems are characterised by their interacting continuous and discrete dynamics, where the continuous subsystem usually represents the system to be controlled and the discrete part describes the controller that switches the continuous system among different operation modes. This paper analyses systems where a perpetual switching of the operation mode has to occur in order to maintain the system's state in a prescribed operating region. It is shown how the analysis of the overall hybrid system can be simplified by using an embedded map that determines the behaviour at the switching instants.

  • Analytical Model on Hybrid State Saving with a Limited Number of Checkpoints and Bound Rollbacks

    Mamoru OHARA  Ryo SUZUKI  Masayuki ARAI  Satoshi FUKUMOTO  Kazuhiko IWASAKI  

     
    PAPER-Reliability, Maintainability and Safety Analysis

      Vol:
    E89-A No:9
      Page(s):
    2386-2395

    This paper discusses distributed checkpointing with logging for practical applications running with limited resources. We present a discrete time model evaluating the total expected overhead per event where the number of available checkpoints that each process can hold is finite. The rollback distance is also bound to some finite interval in many actual applications. Therefore, the recovery overhead for the checkpointing scheme is described by using a truncated geometric distribution as the rollback distance distribution. Although it is difficult to analytically derive the optimal checkpoint interval, which minimizes the total expected overhead, substituting other simple probabilistic distributions instead of the truncated geometric distribution enables us to do this explicitly. Numerical examples obtained through simulations are presented to show that we can achieve almost minimized total overhead by using the new models and analyses.

  • An Accurate Imaging Algorithm with Scattered Waveform Estimation for UWB Pulse Radars

    Shouhei KIDERA  Takuya SAKAMOTO  Satoshi SUGINO  Toru SATO  

     
    PAPER-Sensing

      Vol:
    E89-B No:9
      Page(s):
    2588-2595

    UWB pulse radars that offer target shape estimation are promising as imaging techniques for household or rescue robots. We have already proposed an efficient algorithm for a shape estimation method SEABED which is a fast algorithm based on a reversible transform. SEABED extracts quasi wavefronts from received signals with the filter that matches the transmitted waveform. However, the scattered waveform is, in general, different from the transmitted one depending on the shape of targets. This difference causes estimation errors in SEABED. In this paper, we propose an accurate algorithm for a polygonal-target based on scattered waveform estimation. The proposed method is presented first, followed by results of numerical simulations and experiments that show the efficiency of the proposed method.

  • Parametric Uncertainty Bounds for Stabilizing Receding Horizon H Controls

    ChoonKi AHN  SooHee HAN  WookHyun KWON  

     
    LETTER-Systems and Control

      Vol:
    E89-A No:9
      Page(s):
    2433-2436

    This letter presents parametric uncertainty bounds (PUBs) for stabilizing receding horizon H∞ control (RHHC). The proposed PUBs are obtained easily by solving convex optimization problems represented by linear matrix inequalities (LMIs). We show, by numerical example, that the RHHC can guarantee a H∞ norm bound for a larger class of uncertain systems than conventional infinite horizon H∞ control (IHHC).

  • A Simple Chaotic Spiking Oscillator Having Piecewise Constant Characteristics

    Yusuke MATSUOKA  Toshimichi SAITO  

     
    LETTER-Nonlinear Problems

      Vol:
    E89-A No:9
      Page(s):
    2437-2440

    This paper studies a chaotic spiking oscillator consisting of two capacitors, two voltage-controlled current sources of signum shape and one impulsive switch. The vector field of circuit equation is piecewise constant and embedded return map is piecewise linear. Using the map parameter condition for chaos generation is given. Using a simple test circuit typical phenomena can be confirmed experimentally.

  • Capacity Bound of MIMO Systems with MPSK Modulation and Time-Multiplexed Pilots

    Yifei ZHAO  Ming ZHAO  Yunzhou LI  Jing WANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:9
      Page(s):
    2629-2632

    In this letter, we elucidate the ergodic capacity of multiple-input multiple-output (MIMO) systems with M-ary phase-shift keying (MPSK) modulation and time-multiplexed pilots in frequency-flat Rayleigh fading environment. With linear minimum mean square error (LMMSE) channel estimation, the optimal pilots design is presented. For mathematical tractability, we derive an easy-computing closed-form lower bound of the channel capacity. Based on the lower bound, the optimal power allocation between the data and pilots is also presented in closed-form, and the optimal training length is investigated by numerical optimization. It is shown that the transmit scheme with equal training and data power and optimized training length provides suboptimal performance, and the transmit scheme with optimized training length and training power is optimal. With the latter scheme, in most situations, the optimal training length equals the number of the transmit antennas and the corresponding optimal power allocation can be easily computed with the proposed formula.

  • The Central Limit Theorem for the Normalized Sums of the MAI for SSMA Communication Systems Using Spreading Sequences of Markov Chains

    Hiroshi FUJISAKI  Gerhard KELLER  

     
    PAPER

      Vol:
    E89-A No:9
      Page(s):
    2307-2314

    We extend the sliding block code in symbolic dynamics to transform J (≥2) sequences of Markov chains with time delays. Under the assumption that the chains are irreducible and aperiodic, we prove the central limit theorem (CLT) for the normalized sums of extended sliding block codes from J sequences of Markov chains. We apply the theorem to the system analysis of asynchronous spread spectrum multiple access (SSMA) communication systems using spreading sequences of Markov chains. We find that the standard Gaussian approximation (SGA) for estimations of bit error probabilities in such systems is the 0-th order approximation of the evaluation based on the CLT. We also provide a simple theoretical evaluation of bit error probabilities in such systems, which agrees properly with the experimental results even for the systems with small number of users and low length of spreading sequences.

  • The Bank of Matched Filters for an Optical ZCZ Code Using a Sylvester Type Hadamard Matrix

    Takahiro MATSUMOTO  Shigeo TSUKIASHI  Shinya MATSUFUJI  Yoshihiro TANADA  

     
    PAPER

      Vol:
    E89-A No:9
      Page(s):
    2292-2298

    The optical ZCZ code is a set of pairs of binary and bi-phase sequences with zero correlation zone. An optical M-ary direct sequence spread spectrum (M-ary/DS-SS) system using this code can detect a desired sequence without interference of undesired sequences. However, the bank of matched filters in a receiver circuit may fall into large scale. In this paper, we propose the compact construction of a bank of matched filters for an M-ary/DS-SS system using an optical ZCZ code. This filter bank can decrease the number of 2-input adders from O(N2) to O(N) and delay circuits from O(N2) to O(Nlog 2 N), respectively, and is implemented on a field programmable gate array (FPGA) corresponding to 400,000 logic gates.

  • Channel Identification with Linear Time-Varying Channel Model for Pilot Channel Aided DS/CDMA Systems

    Jung Suk JOO  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:9
      Page(s):
    2652-2654

    A new channel identification algorithm using both pilot and traffic channels is proposed. It is based on the linear modelling for the fading channel and takes the form of a modified recursive least-squares (RLS) algorithm. Its existence is also analyzed. It will be shown through computer simulation that the proposed algorithm is robust to the variation of the channel fade rate in a mean square error (MSE) sense.

  • Multiobjective Evolutionary Approach to the Design of Optimal Controllers for Interval Plants via Parallel Computation

    Chen-Chien James HSU  Chih-Yung YU  Shih-Chi CHANG  

     
    PAPER-Systems and Control

      Vol:
    E89-A No:9
      Page(s):
    2363-2373

    Design of optimal controllers satisfying performance criteria of minimum tracking error and disturbance level for an interval system using a multi-objective evolutionary approach is proposed in this paper. Based on a worst-case design philosophy, the design problem is formulated as a minimax optimization problem, subsequently solved by a proposed two-phase multi-objective genetic algorithm (MOGA). By using two sets of interactive genetic algorithms where the first one determines the maximum (worst-case) cost function values for a given set of controller parameters while the other one minimizes the maximum cost function values passed from the first genetic algorithm, the proposed approach evolutionarily derives the optimal controllers for the interval system. To suitably assess chromosomes for their fitness in a population, root locations of the 32 generalized Kharitonov polynomials will be used to establish a constraints handling mechanism, based on which a fitness function can be constructed for effective evaluation of the chromosomes. Because of the time-consuming process that genetic algorithms generally exhibit, particularly the problem nature of minimax optimization, a parallel computation scheme for the evolutionary approach in the MATLAB-based working environment is also proposed to accelerate the design process.

  • On the Sum-Rate Capacity of Multi-User Distributed Antenna System with Circular Antenna Layout

    Jiansong GAN  Shidong ZHOU  Jing WANG  Kyung PARK  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E89-B No:9
      Page(s):
    2612-2616

    In this letter, we investigate the sum-rate capacity of a power-controlled multi-user distributed antenna system (DAS) with antennas deployed symmetrically on a circle. The sum-rate capacity, when divided by user number, is proved to converge to an explicit expression as user number and antenna number go to infinity with a constant ratio. We further show how this theoretical result can be used to optimize antenna deployment. Simulation results are also provided to demonstrate the validity of our analysis and the applicability of the asymptotic results to a small-scale system.

  • An Entropy-Based Approach to Protecting Rating Systems from Unfair Testimonies

    Jianshu WENG  Chunyan MIAO  Angela GOH  

     
    PAPER-Contents Technology and Web Information Systems

      Vol:
    E89-D No:9
      Page(s):
    2502-2511

    How to mitigate the influence of unfair testimonies remains an open issue in the research of rating systems. Methods have been proposed to filter the unfair testimonies in order to mitigate the influence of unfair testimonies. However, existing methods depend on assumptions that ratings follow a particular distribution to carry out the testimony filtering. This constrains them in specific rating systems and hinders their applications in other reputation systems. Moreover, existing methods do not scale well with the increase of testimony number due to their iterative nature. In this paper, a novel entropy-based method is proposed to measure the testimony quality, based on which unfair testimonies are further filtered. The proposed method does not require the assumption regarding the rating distribution. Moreover, it scales linearly with the increase of the testimony number. Experimental results show that the proposed method is effective in mitigating the influence of various types of unfair testimonies.

  • Frequency-Hopping Pilot Patterns for OFDM Cellular Systems

    Branislav M. POPOVIC  Yang LI  

     
    PAPER

      Vol:
    E89-A No:9
      Page(s):
    2322-2328

    A general method for generating multiple two-dimensional frequency-hopping pilot signals with limited mutual interference, for propagation channel estimation in time and frequency with equidistant sampling, is presented. Each pilot signal uses a different generic frequency-hopping pilot pattern that is repeated in frequency domain, with repetition period equal to the desired sampling interval in frequency domain. Some interesting special cases of the general construction are considered as well. The practical applicability and usefulness of the proposed solution are demonstrated by the numerical evaluation of a set of frequency-hopping pilot patterns in a typical multi-cell scenario of the future evolved third generation cellular systems.

  • SENS: A Scalable and Expressive Naming System for Resource Information Retrieval

    Hoaison NGUYEN  Hiroyuki MORIKAWA  Tomonori AOYAMA  

     
    PAPER

      Vol:
    E89-B No:9
      Page(s):
    2347-2360

    We have designed a scalable and expressive naming system called SENS, capable of retrieving information of computing and content resources distributed widely across the Internet through exact queries and multi-attribute range queries over resource names. Our system utilizes a descriptive naming scheme to name resources and a multi-dimensional resource ID space for message routing through an overlay network of name servers (NSs). The resource ID space is constructed on the overlay network based on CAN routing algorithm. Our novel mapping scheme between resource names and resource IDs preserves resource ID locality while still achieving good load balancing regarding resource information distribution. We also propose a multicast routing algorithm to deliver resource information and a broadcast routing algorithm to route query messages to corresponding NSs with small cost of message transmission. Our simulation results show that our system can achieve good routing performance and load balancing.

  • A Dynamic Index Allocation Scheme for Data Retrieval and Provision in Peer-to-Peer Networks

    Atsushi ITO  Tomoyuki OHTA  Kouichi MITSUKAWA  Yoshiaki KAKUDA  

     
    PAPER

      Vol:
    E89-B No:9
      Page(s):
    2336-2346

    File-sharing Peer-to-Peer systems are effective for autonomous data retrieval and provision over the networks. However, the early data retrieval schemes such as Gnutella and Local Indices have low performance and large overhead. In order to solve weakness of early schemes, this paper proposes a dynamic scheme for data retrieval and provision, in which indices are adaptively allocated in appropriate nodes to variation of traffic patterns caused by query messages. The simulation experimental results show that the proposed scheme has good performance with reasonable overhead even when the traffic patterns vary as time proceeds.

  • Reliability of a 2-Dimensional Lattice System Subject to Dependent Component Failure

    Tetsushi YUGE  Shigeru YANAGI  

     
    PAPER-Reliability, Maintainability and Safety Analysis

      Vol:
    E89-A No:8
      Page(s):
    2192-2197

    In this paper an analysis of component and system reliability for lattice systems is proposed when component failures are not statistically independent. We deal the case that the failure rate of a component depends on the number of the adjacent failed components. And we discuss the maintainability of the system when a failed component is replaced by a spare component. At first we discuss the approximated reliability of each component. Then we estimate the mean number of failed components. Furthermore, the system reliability is approximated by using the component reliability.

1501-1520hit(3183hit)