John Paul TORREGOZA Pham Ngoc THAI Won Joo HWANG Yun Sop HAN Fumio TERAOKA Martin ANDRE Hiroaki HARAI
Cognitive radio in network core devices, such as basestations, is being considered as a spectrum management solution for future society's communication demands. Aside from new resource allocation algorithms, efficient inter- and intra-protocol processing should be considered. In this paper, we propose an opportunistic cross layer architecture called COmmon Layer Architecture (COLA) for information exchange between arbitrary layers in New Generation Networks with network-oriented cognitive radio. COLA provides a means for faster information exchange between OSI layers by introducing abstraction at each layer and designing primitives for communication between each abstraction layer. Emulation and simulation results showed improvements, compared to conventional networks, in disrupted service (
Ping DONG Jia CHEN Hongke ZHANG
Locator/ID Separation Protocol (LISP) is an efficient proposal for solving the severe routing scalability problems existing in the current IPv4-based Internet and the future IPv6-based Internet. However, the basic LISP architecture does not specify how to support mobility in detail. As mobility is a fundamental issue faced by the future Internet, LISP mobility architecture (LISP-MN) was proposed recently to extend LISP to support mobility. Nevertheless, LISP-MN is a host-based mobility approach which requires software changes in end systems. To some extent, such a design breaks the primary design principles of LISP, which is a network-based protocol and requires no modification to the hosts. In addition, LISP-MN faces the same inherent problems as other host-based approaches (e.g., MIPv4, MIPv6), such as handover latency, packet loss, and signalling overhead. To solve the above problems, this paper proposes MobileID, which is a network-based localized mobility approach for LISP. In our design, a mobile node is not aware of its mobility and does not participate in handover signalling. Instead, the network takes the responsibility for managing mobility on behalf of the mobile node. We present a general overview of MobileID architecture, and introduce the detailed protocol operations in terms of the basic MobileID handover process and the route optimization procedures. Furthermore, we describe a MobileID analytic model, and compare MobileID handover performance with three representative mobility solutions, i.e., LISP-MN, MIPv6 and PMIPv6. Numerical results show the superior performance of MobileID. The handover latency of MobileID is much lower than those of LISP-MN and MIPv6, and it becomes lower than that of PMIPv6 in case of a long wireless link delay.
Akira NAGATA Shinya YAMAMURA Masato TSURU
Motivated by the question of how to quickly transfer large files if multiple and heterogeneous networks are available but each has insufficient performance for a requested task, we propose a data transfer framework for integrating multiple and heterogeneous challenged access networks, in which long delays, heavy packet losses, and frequent disconnections are observed. An important feature of this framework is to transmit the control information separately from the transmission of data information, where they are flexibly transferred on different types of communication media (network paths) in different ways, and to provide a virtual single network path between the two nodes. We describe the design of the mechanisms of this framework such as the retransmission, the rate adjustment of each data flow, and the data-flow setup control. We validate a prototype implementation through two different experiments using terrestrial networks and a satellite communication system.
Ngoc-Thai PHAM Rentsent ENKHBAT Won-Joo HWANG
Since video traffic has become a dominant flow component on the Internet, the Future Internet and New Generation Network must consider delay guarantees as a key feature in their designs. Using the stochastic network optimization, optimal control policies are designed for delay-constrained traffic in single-hop wireless networks. The resulting policy is a scheduling policy with delay guarantees. For a cross-layer design that involves both flow control and scheduling, the resulting policy is a flow control and scheduling policy that guarantees delay constraints and achieves utility performance within O(1/V) of the optimality.
We are researching a mobile and sensor access platform network for the future called NerveNet, which accommodates ubiquitous sensors and provides services in local areas. The realization of reliable and accountable information collection, processing and provision over NerveNet poses a challenging and fundamental issue in promotion of the sensor business field. As a first step toward a reliable NerveNet, we investigate privacy preservation and the collection of reliable sensor information for prospective personalized sensor applications. The privacy requirement impels the logic separation between sensor networks and the communication platform in the design of NerveNet architecture. To enable sensor network users (SNUs) to reliably interact with sensors managed by different sensor network owners (SNOs), we designed a secure sensor sharing framework (S3F) based on two business models – the Ad Hoc Sales Model (AHSM) and Shopping Center Sales Model (SCSM). With S3F-AHSM, an SNU acquires permission from an SNO each time she wants to obtain information from a sensor. On the other hand, with S3F-SCSM, an SNU can obtain the access privilege to a flexible set of sensors based on the queried preferences via a third party called a sensor network service provider (SNSP). In S3F-SCSM, SNSPs that share the sensors owned by various SNOs have the ability to search the preferred sensors and provide the authorization certificate to the SNUs.
Secure access is one of the key concerns of wireless sensor networks (WSNs). In WSNs, because there are many dynamically mutable attributes, continuous access decisions and dynamic attribute updates should be important properties of access control. In addition, WSNs need low-complexity authentication protocols because of the constrained resources. However, the authentication protocols of most current security access schemes have relatively high complexity. More importantly, the access control models of existing schemes cannot provide attribute mutability and continuous decisions dynamically. To address above issues, we propose a dynamic secure access mechanism for WSNs. Firstly, we design a lightweight secure authentication protocol and dynamic access control based on security token and usage control (UCON), respectively. Then, the agent technology is adopted to implement the proposed secure access scheme. Secondly, we analyze the probability of the dynamic attribute update and decisions. Thirdly, we implement an instance of UCON. The implementation results indicate the feasibility of using UCON in WSNs. Finally, by evaluating and comparing with current schemes, the authentication protocol in our scheme presents several advantages including the low expenses in calculation, storage and communication. To our best knowledge, this paper is the first to realize next generation dynamic access control with attribute mutability and continuous decisions in WSNs.
Existing time synchronization schemes in sensor networks were all developed to be energy-efficient, precise, and robust, but none of them were developed with security in mind. We have developed a secure, accurate and energy-efficient time synchronization protocol (SAEP). SAEP achieves accurate time synchronization service with significantly reducing the number of message exchanges. Also, it safeguards against Byzantine failure, in which nodes drop, modify, or delay time information in an attempt to disrupt the time synchronization service in multi-hop networks. SAEP takes a distributed approach where each sensor independently makes decisions based only on the information collected from multiple adjacent nodes, thus achieving a high level of resistance to various attacks while minimizing the energy cost. We investigate the misbehavior of a maliciously compromised node and analyze how SAEP can combat these attacks. In our experiment SAEP outperforms the existing time synchronization protocol in accuracy, energy consumption and it is even resilient to multiple capture attacks.
Mohammad Reza ZOGHI Mohammad Hossein KAHAEI
This paper addresses the problem of sensor selection in wireless sensor networks (WSN) subject to a distortion constraint. To do so, first, a cost function is derived based on the spatial correlation obtained using the best estimation of the event source. Then, a new adaptive algorithm is proposed in which the number of active sensors is adaptively determined and the best topology of the active set is selected based on the add-one-sensor-node-at-a-time method. Simulations results show that the active sensors selected using the proposed cost function have less event distortion. Also, it is shown that the proposed sensor selection algorithm is near optimum and it has better performance than other algorithms with regard to the computational burden and distortion.
Thi Xuan My NGUYEN Yoshikazu MIYANAGA Chaiyachet SAIVICHIT
In this paper, we propose a framework of connectivity analysis for aviation ad hoc networks on flight paths. First, a general analytical connectivity model for the common one-dimensional ad hoc network is newly developed. Then it is applied for modeling the connectivity of ad hoc networks among aircraft along flight paths where aircraft arrival process follows a Poisson distribution. Connectivity is expressed in terms of connectedness probability of two nodes in the network, connected distance, and network coverage extension factor. An exact closed form derivation of connectedness probability is proposed. The radical effect of mobility on the network connectedness of aircraft over a single flight path is analyzed. The network connectedness probability depends on node density and node distribution, which are derived from node arrival rate and node velocity. Based on these results, the proposed model is extended to the practical case of paths with multi-velocity air traffic classes. Using this model, the critical values of system parameters for the network of aircraft with certain connectivity requirements can be derived. It helps to evaluate network extension capability under the constraints of various system parameters.
Yoshitoshi MURATA Tsuyoshi TAKAYAMA Nobuyoshi SATO Kei KIKUCHI
The IP Multimedia Subsystem (IMS) establishes a session between end terminals as a client/server application in the Next Generation Network (NGN). These days, many application services are being provided as Web services. In this letter, we propose a new NGN architecture conforming to the architectural styles of Representational State Transfer (REST), which is a Web service technology for solving interoperability and traffic concentration problems in the Session Initiation Protocol (SIP).
In this letter, we propose a Partially Observable Markov Decision Process (POMDP) based Distributed Adaptive Opportunistic Spectrum Access (DA-OSA) Strategy for Cognitive Ad Hoc Networks (CAHNs). In each slot, the source and destination choose a set of channels to sense and then decide the transmission channels based on the sensing results. In order to maximize the throughput for each link, we use the theories of sequential decision and optimal stopping to determine the optimal sensing channel set. Moreover, we also establish the myopic policy and exploit the monotonicity of the reward function that we use, which can be used to reduce the complexity of the sequential decision.
Atsufumi MORIYAMA Hiroshi ISHINISHI Katsuichi NAKAMURA Yoshiaki HORI
In routing, we usually use OSPF with Dijkstra or RIP with Bellman-Ford, but they can only treat single metric routing problem. With multiple metrics, we would use the weighted average of the metrics or techniques from operations research, but they are not suitable for routing because they lack validity and simplicity. Here, we propose a routing algorithm to deal with the three security metrics proposed by I. A. Almerhag and M. E. Woodward, and show an example routing policy. Besides, we make a study on the constraints of the metrics and the routing policies, and come to the precondition of the proposed routing algorithm.
Nozomu KATAYAMA Takeshi FUJIMURA Hiroyoshi MIWA Noriaki KAMIYAMA Haruhisa HASEGAWA Hideaki YOSHINO
When a link or node fails in a network, the affected flows are automatically rerouted. This increases the hop counts of the flows, which can drastically degrade network performance. Keeping the hop lengths as stable as possible, i.e., minimizing the difference in hop length between the original flow and the rerouted flow is important for network reliability. Therefore, network service providers need a method for designing networks that stabilizes the flow hop length and maintains connectivity during a link or node failure with limited investment cost. First, we formulate the network design problem used for determining the set of links to be added that satisfies the required constraints on flow hop length stability, connectivity, and node degree. Next, we prove that this problem is NP-complete and present two approximation algorithms for the optimization problem so as to minimize the number of links added. Evaluation of the performance of these algorithms by using 39 backbone networks of commercial ISPs and networks generated by two well-known models showed that the proposed algorithms provide effective solutions in sufficiently short computation time.
In optical packet switches, the overhead of reconfiguring a switch fabric is not negligible with respect to the packet transmission time and can adversely affect switch performance. The overhead increases the average waiting time of packets and worsens throughput performance. Therefore, scheduling packets requires additional considerations on the reconfiguration frequency. This work intends to analytically find the optimal reconfiguration frequency that minimizes the average waiting time of packets. It proposes an analytical model to facilitate our analysis on reconfiguration optimization for input-buffered optical packet switches with the reconfiguration overhead. The analytical model is based on a Markovian analysis and is used to study the effects of various network parameters on the average waiting time of packets. Of particular interest is the derivation of closed-form equations that quantify the effects of the reconfiguration frequency on the average waiting time of packets. Quantitative examples are given to show that properly balancing the reconfiguration frequency can significantly reduce the average waiting time of packets. In the case of heavy traffic, the basic round-robin scheduling scheme with the optimal reconfiguration frequency can achieve as much as 30% reduction in the average waiting time of packets, when compared with the basic round-robin scheduling scheme with a fixed reconfiguration frequency.
In ubiquitous sensor networks, extra energy savings can be achieved by selecting the filtering solution to counter the attack. This adaptive selection process employs a fuzzy rule-based system for selecting the best solution, as there is uncertainty in the reasoning processes as well as imprecision in the data. In order to maximize the performance of the fuzzy system the membership functions should be optimized. However, the efforts required to perform this optimization manually can be impractical for commonly used applications. This paper presents a GA-based membership function optimizer for fuzzy adaptive filtering (GAOFF) in ubiquitous sensor networks, in which the efficiency of the membership functions is measured based on simulation results and optimized by GA. The proposed optimization consists of three units; the first performs a simulation using a set of membership functions, the second evaluates the performance of the membership functions based on the simulation results, and the third constructs a population representing the membership functions by GA. The proposed method can optimize the membership functions automatically while utilizing minimal human expertise.
As the demand for spectrum for future wireless communication services increases, cognitive radio technology has been developed for dynamic and opportunistic spectrum access, which enables the secondary users to use the underutilized licensed spectrum of the primary users. In particular, the recent studies on the MAC protocol for dynamic and opportunistic access have focused on sensing and using the vacant spectrum efficiently. Under the ad-hoc network environment, how the secondary users use the unused channels by the primary users affects the efficient utilization of channels and a cognitive radio system is required to follow the rapid and frequent changes in channel status. In this paper, we propose a self-scheduling multi-channel cognitive MAC (SMC-MAC) protocol, which allows multiple secondary users to transmit data though the sensed idle channels by two cooperative channel sensing algorithms, i.e., fixed channel sensing (FCS) and adaptive channel sensing (ACS), and by slotted contention mechanism to exchange channel request information for self-scheduling. The performance of the proposed SMC-MAC protocol is investigated via analysis and simulations. According to the results, the proposed SMC-MAC protocol is effective in allowing multiple secondary users to transmit data frames effectively on multi-channels and adaptively in response to the primary users' traffic dynamics.
Masato HAYASHI Susumu MATSUI Naoki WAKAMIYA Masayuki MURATA
The delay/disruption tolerant network (DTN) has been researched actively in the last years because of its high applicability to ubiquitous network services such as sensor networks and intelligent transport system (ITS) networks. An efficient data forwarding method for those network services is one of the key components in DTN due to the limitation of wireless network resources. This paper proposes a new DTN scheme for vehicle network systems by introducing the parameter, “approach ratio”, which represents node movement history. The proposal utilizes passive copy strategy, where nodes within one hop area of packet forwarders receive, copy and store packets (namely, passive copies) for future forwarding, in order to obtain higher delivery rate and lower delivery delay whilst suppressing the network resource consumption. Depending on its approach ratio, a node with passive copy decides whether it forwards the passive copy or not by referring to the approach ratio threshold. The approach ratio allows our proposal to adjust the property of both single-copy type scheme, that can lower network resource consumption, and multi-copy type scheme, that can enhance the performance of delivery rate and delay time. In simulation evaluation, the proposal is compared with three typical existing schemes with respect to network consumption, delivery rate and delivery delay. Our proposal shows the superior performance regarding the targeted purpose. It is shown that the approach ratio plays the significant role to obtain the higher delivery rate and lower delay time, while keeping network resource consumption lower.
Video applications such as video conferencing among multiple users and video surveillance systems require multiple video connections and QoS guarantee. These days the video systems equipped with IEEE 802.11 LAN interfaces allows a broadband wireless access to the Internet at a reasonable price. However, according to the current IEEE 802.11e HCCA standard, if more than two video sessions are to be established simultaneously, some of them must share the TXOP because the available number of TSIDs for video transmission is restricted to two. In order to resolve this problem, we devise a scheme which can establish up to 13 video sessions by slightly modifying the frame structure while maintaining the compatibility with the current standard. Our scheme is implemented on the NCTUns 4.0 network simulator, and evaluated numerically in terms of throughput, delay, and PSNR. Also real video clips are used as input to our simulation. The results showed that our scheme guarantees the transmission bandwidth requested by each video session.
In this paper, we propose a simple but effective way of improving the performance of channel estimation (CE) for pilot cyclic prefixed single carrier (PCP-SC) system. The proposed method utilizes the property that the shifting signal of the PCP pilot signal can also be utilized to estimate the channel information. The receiver can continuously estimate the channel information by just shifting the received pilot signal. Regardless of the signal-to-noise ratio (SNR) and the pilot type, the proposed method can achieve about a 1.72 dB performance gain in terms of the mean squared error (MSE) of channel estimation with a slight increase in computational complexity. The BER performance with the proposed CE improvement are evaluated in a multipath fading channel using a zero-forcing (ZF) equalizer and an minmum mean squared error (MMSE) equalizer by computer simulation. It is shown that the proposed CE improvment method using an MMSE equalizer which has an unbiased vlaue of noise variance (NV) estimator gives a promising BER performance. The proposed method also benefits the estimation of the SNR for the single carrier system.
IP Datacast over DVB-H has been adopted as a core technology to build complete end-to-end mobile broadcast TV systems. In order for this technology to be successful in the market, provisioning of acceptable QoE (Quality of Experience) to the users, as well as a wide range of business models to the service providers, is essential. In this paper, we analyze the channel zapping time, which is an important metric to measure QoE for mobile broadcast TV services. In particular, we clarify primary components that determine the channel zapping time for protected services in IP Datacast over DVB-H. Our analysis is based on the data gathered during the trial service of the OMA-BCAST Smartcard profile in Singapore, Asia. Based on the analysis, we show that a significant reduction in channel zapping time can be achieved by optimizing the transmission parameters related to the key derivation time and the synchronization time between the content stream and the key stream.
Yoshinori SUZUKI Kiyoshi KOBAYASHI
This paper presents a novel electrical polarization forming antenna for mobile satellite communication systems using linear polarization. To electrically form the desired polarization, it is necessary to excite the two orthogonal polarization antenna planes with appropriate weights. The proposed antenna uses digitally-based polarization and calibration functions to characterize the two RF paths. The calibration techniques used are critical to accurately forming the desired polarization. Proposed calibration techniques are very simple; the feedback signal consists of just amplitude levels. The proposals are validated by polarization forming measurements conducted on a fabricated antenna.
Masayuki K. YAMAMOTO Tomoaki MEGA Nobuyuki IKENO Toyoshi SHIMOMAI Hiroyuki HASHIGUCHI Mamoru YAMAMOTO Masahisa NAKAZATO Takuya TAJIRI Takashi ICHIYAMA
This study demonstrates the ability of a portable X-band Doppler weather radar (XDR) to measure Doppler velocity (Vd). Existing portable X-band weather radars are housed in a container and hence have to be carried by a truck. Therefore they have limitations in their installation places. For installations at small areas where the existing X-band weather radars cannot be installed (e.g., rooftop area of small building), XDR is designed to be carried by a cart. Components of the outdoor unit (a parabolic antenna with a diameter of 1.2 m, magnetron transmitter, and radio frequency (RF) and intermediate frequency (IF) analog components) are housed in a compact body with a weight less than 300 kg. The radar operation, IF digital processing, and data storage are carried out by a desktop computer having a commercial IF digital receiver. In order to attain the required portability and reduced purchase and running costs, XDR uses a magnetron transmitter. Because XDR is the first that utilizes an IF digital receiver for the signal processing specific to magnetron transmitters (i.e., the phase correction of received signals due to the randomness of the transmitted pulse phase), Vd measured by XDR (hereafter VdXDR) was assessed. Using the dataset collected from 25 to 26 October 2009 at the Shigaraki MU Observatory (34
Jianjun MU Xiaopeng JIAO Jianguang LIU Rong SUN
Trapping sets have been identified as one of the main factors causing error floors of low-density parity-check (LDPC) codes at high SNR values. By adding several new rows to the original parity-check matrix, a novel method is proposed to eliminate small trapping sets in the LDPC code's Tanner graph. Based on this parity-check matrix extension, we design new codes with low error floors from the original irregular LDPC codes. Simulation results show that the proposed method can lower the error floors of irregular LDPC codes significantly at high SNR values over AWGN channels.
This letter proposes a new scheduling method to improve scheduling efficiency of EPON. The proposed method uses a credit pool for each optical network unit (ONU) and for each service class. For high scheduling efficiency, the credit pool of an ONU can be negative amount to utilize the unused ONU credits. Also the proposed method dynamically excludes the lowest service class from scheduling to decrease a transmission cycle length. Using simulations, we show that the proposed method is better than the existing methods in mean delay.
Orthogonal frequency division multiplexing has emerged as a promising air interface scheme for wireless broadband communications. For OFDM systems, frame synchronization has received much attention in the literature, though simple correlators are still widely used in real systems. In this letter, we present the analytical expression of the optimal frame synchronizer for OFDM systems. Frame synchronization is posed as a maximum a posteriori probability estimation. We show that the resulting frame synchronizer consists of a correlation term and a correction term. The correction term accounts for the random data surrounding a synchronization word. Numerical results show the performance gain of the proposed frame synchronizer over a correlation scheme.
Wireless sensor networks (WSN) is composed of so many small sensor nodes which have limited resources. So the technique that raises energy efficiency is the key to prolong the network life time. In the paper, we propose an agent based framework which takes the biological characteristics of gene. The gene represents an operation policy to control agent behavior. Agents are aggregated to reduce duplicate transmissions in active period. And it selects next hop based on the information of neighbor agents. Among neighbors, the node which has enough energy is given higher priority. The base station processes genetic evolution to refine the behavior policy of agent. Each agent is taken latest gene and spread recursively to find the optimal gene. Our proposed framework yields sensor nodes that have the properties of self-healing, self-configuration, and self-optimization. Simulation results show that our proposed framework increases the lifetime of each node.
Pengxuan MAO Yang XIAO Kiseon KIM
In this letter, we propose an improved Droptail algorithm that introduces the random packet drop strategy. Our theoretical analysis and experiments prove that the improved Droptail can match the most performance of AQM algorithms in stabilizing the TCP system and solving the global synchronization problem, while significantly reducing the complexity of the router control. This fact shows that our algorithm is superior to the most popular AQM algorithms such as RED, PI, etc.
Satoshi YAGITANI Mitsunori OZAKI Hirotsugu KOJIMA
A sensor network consisting of a number of palm-sized nodes with small electric and magnetic sensors has been proposed to monitor local electromagnetic activities in space plasmas. In the present study, a compact loop antenna system is designed and fabricated for use in sensor nodes that can capture magnetic vector fields from ELF to MF frequencies. The performance of the developed system is shown to be sufficient to allow measurement of the magnetic field activity around artificial structures in addition to intense natural plasma waves in geospace.
Kun-Joon LEE Tae-Hak LEE Young-Sik KIM
A dual-band patch antenna with a shorting wall and a U-shaped slot is presented in this paper. The shorted-patch is coupled with the aperture slot that is closely placed to the shorting wall for achieving good impedance matching. A U-shaped slot is embedded in the shorted-patch and is located near the radiating edge to yield a dual-band operation. By changing the side slot length of the U-shaped slot, the tunable frequency ratio of the proposed antenna is varied from 1.73 to 2.05.
Lin WANG Qiang CHEN Qiaowei YUAN Kunio SAWAYA
The multiple-input multiple-output (MIMO) performance of the modulated scattering antenna array (MSAA) is analyzed numerically for the first time in indoor environment based on an approach to hybridization of the Volterra series method and method of moments (MoM) in this letter. Mutual coupling effect between the Modulated scattering element (MSE) and the normal antenna element is also considered in this analysis. It is found that MIMO performance of the MSAA is improved with reducing the array spacing of the MSAA in 4 different indoor receiving areas. At the same time, the simulated results of the MSAA are compared with those of the dipole antenna array at the same condition.
Hiroki KAWAI Kanako WAKE Takuji ARIMA Soichi WATANABE
This paper proposes a head-local-exposure system using a figure-8 loop antenna for 2-GHz band operation. This system allows us to observe biological effects through microcirculation of the rat brain simultaneously with exposure through a cranial window, i.e., the window made by transparent glass and implanted on the surface of the rat brain. The specific absorption rate (SAR) in a rat exposed to microwaves due to the new exposure system is estimated numerically and experimentally. The ratio of averaged SAR between the target area, which is the brain's surface just under the cranial window, and the whole body is about 59 for the 8-week rat model and 13 for the 2-week rat model. This antenna achieves local exposure for the rat brain for 2-GHz band operation.
Channel errors may exist in Radio Frequency IDentification (RFID) systems due to low power backscattering of tags. These errors prevent the rapid identification of tags, and reducing this deterioration is an important issue. This paper presents performance analysis of various tag anti-collision algorithms and shows that the performances of RFID systems can be improved by applying a proposed robust algorithm in error-prone environments.
Yookeun KANG Dongwoo LEE Jae Hong LEE
In this letter, we propose a new resource allocation scheme for a two-way OFDM relay network with fairness constraints. To maximize sum capacity, subcarriers and their power are successively allocated to the relays based on channel conditions. Also, the power constraint is imposed on each relay to achieve fairness for the relays. Simulation results show that the proposed scheme improves sum capacity and fairness significantly.
Chongbin XU Hao WANG Xiaokang LIN
We study the transmission techniques in orthogonal frequency division multiplexing (OFDM) systems with imperfect channel state information at the transmitter (CSIT). We focus on the issue of utilizing the available CSIT by a single forward error control (FEC) code. We first analyze the system performance for the ideal coding case. We then develop a simple but efficient scheme for the practical coding case, which is based on joint FEC coding and linear precoding at the transmitter and iterative linear minimum-mean-square-error (LMMSE) detection at the receiver. Numerical results show that significant performances gains can be achieved by the proposed scheme.
Jianxiong HUANG Taiyi ZHANG Runping YUAN Jing ZHANG
This letter investigates the performance of amplify-and-forward relaying systems using maximum ratio transmission at the source. A closed-form expression for the outage probability and a closed-form lower bound for the average bit error probability of the system are derived. Also, the approximate expressions for the outage probability and average bit error probability in the high signal-to-noise ratio regime are given, based on which the optimal power allocation strategies to minimize the outage probability and average bit error probability are developed. Furthermore, numerical results illustrate that optimizing the allocation of power can improve the system performance, especially in the high signal-to-noise ratio regime.
Recently, global positioning system (GPS)-enabled mobile units have been popular in wireless mobile communications systems, and thus it becomes possible for mobile units to estimate the velocity before a random access for initiating communications. Motivated by this, we propose a new random access scheme establishing two or more access slot groups corresponding to velocity ranges of mobile units, where each mobile unit attempts a random access only at the slot group corresponding to its current velocity. It gives advantages that access slots can be flexibly grouped according to vehicle traffic conditions and detection algorithms can be optimized to each velocity range.
Jongwoo KIM Suwon PARK Seung Hyong RHEE Yong-Hoon CHOI Ho Young HWANG Young-uk CHUNG
Various co-sited wireless communication systems may share the same frequency band. This causes mutual interference between the wireless communication systems, and degrades the performance of each wireless communication system. In this paper, we analyze the effect of mutual interference between WiFi and WiMAX systems sharing the same frequency band. We propose novel methods based on a proposed coexistence zone within the WiMAX frame structure and a modified power saving mode of the WiFi system to solve the problem. We evaluate the performance of the proposed methods by computer simulation.
SungIl LEE JaeSung LIM Jae-Joon LEE
We propose a new resource prediction method for the Demand Assigned Multiple Access (DAMA) scheme in satellite networks. Inaccurate prediction of future traffic causes degradation of QoS and utilization due to the long delay in satellite networks. The Dynamic Leveling Scheme (DLS) use a leveling method to modify its prediction to a discrete one to change the precision of the prediction result. This new scheme has two features: 1) It enhances the probability of successful prediction and 2) it can be applied to any type of existing prediction method. Simulations show enhanced utilization and performance of the satellite link.
Bin SONG Hao QIN Xuelu PENG Yanhui QIN
An adaptive selective retransmission algorithm for video communications based on packet importance value is proposed. The algorithm can adaptively select the retransmission threshold in realtime and efficiently manage the retransmission process in heavy loaded networks while guaranteeing acceptable video quality at the receiver.