The search functionality is under construction.

Author Search Result

[Author] Shun-ichiro Ohmi(32hit)

1-20hit(32hit)

  • Characterization of AlON Thin Films Formed by ECR Plasma Oxidation of AlN/Si(100)

    Shun-ichiro OHMI  Go YAMANAKA  Tetsushi SAKAI  

     
    PAPER

      Vol:
    E87-C No:1
      Page(s):
    24-29

    Electron cyclotron resonance (ECR) plasma oxidation of AlN thin films was studied to form the AlON high-κ gate insulator. The leakage current was found to be decreased, and also the surface roughness was improved with the ECR plasma oxidation of AlN thin films. The leakage current was further decreased after 1000 RTA in N2 with little increase of equivalent oxide thickness (EOT) because of the high quality interfacial layer formation.

  • Investigation of n-Type Pentacene Based MOS Diodes with Ultra-Thin Metal Interface Layer

    Young-Uk SONG  Hiroshi ISHIWARA  Shun-ichiro OHMI  

     
    PAPER

      Vol:
    E94-C No:5
      Page(s):
    767-770

    In order to realize stable n-type characteristics of pentacene for applying to the organic complementary metal-oxide-semiconductor field-effect transistors (CMOS), we have fabricated pentacene based MOS diodes using ultra-thin Yb layer such as 0.5-3 nm between gate insulator and pentacene. From the results of capacitance-voltage (C-V) measurements, excellent n-type C-V characteristics of the devices with 1 and 2 nm-thick Yb were observed even though the devices were measured in air. These results suggested that the n-type semiconductor characteristics of pentacene are able to be improved by the thin Yb interfacial layer. Furthermore, the improved n-type characteristics of pentacene will enable the fabrication of flexible complementary logic circuits utilizing one kind organic semiconductor.

  • Improvement of Endurance Characteristics for Al-Gate Hf-Based MONOS Structures on Atomically Flat Si(100) Surface Realized by Annealing in Ar/H2 Ambient

    Sohya KUDOH  Shun-ichiro OHMI  

     
    PAPER

      Vol:
    E101-C No:5
      Page(s):
    328-333

    In this study, the effect of atomically flat Si(100) surface on Hf-based Metal-Oxide-Nitride-Oxide-Silicon (MONOS) structure was investigated. After the atomically flat Si(100) surface formation by annealing at 1050/60min in Ar/4%H2 ambient, HfO2(O)/HfN1.0(N)/HfO2(O) structure with thickness of 10/3/2nm, respectively, was in-situ deposited by electron cyclotron resonance (ECR) plasma sputtering. The memory window (MW) of Al/HfO2/HfN1.0/HfO2/p-Si(100) diodes was increased from 1.0V to 2.5V by flattening of Si(100) surface. The program and erase (P/E) voltage/time were set as 10V/5s and -8V/5s, respectively. Furthermore, it was found that the gate current density after the 103P/E cycles was decreased one order of magnitude by flattening of Si(100) surface in Ar/4.0%H2 ambient.

  • Etching Control of HfN Encapsulating Layer for PtHf-Silicide Formation with Dopant Segregation Process

    Shun-ichiro OHMI  Yuya TSUKAMOTO  Rengie Mark D. MAILIG  

     
    PAPER

      Vol:
    E102-C No:6
      Page(s):
    453-457

    In this paper, we have investigated the etching selectivity of HfN encapsulating layer for high quality PtHf-alloy silicide (PtHfSi) formation with low contact resistivity on Si(100). The HfN(10 nm)/PtHf(20 nm)/p-Si(100) stacked layer was in-situ deposited by RF-magnetron sputtering at room temperature. Then, silicidation was carried out at 500°C/20 min in N2/4.9%H2 ambient. Next, the HfN encapsulating layer was etched for 1-10 min by buffered-HF (BHF) followed by the unreacted PtHf metal etching. We have found that the etching duration of the 10-nm-thick HfN encapsulating layer should be shorter than 6 min to maintain the PtHfSi crystallinity. This is probably because the PtHf-alloy silicide was gradually etched by BHF especially for the Hf atoms after the HfN was completely removed. The optimized etching process realized the ultra-low contact resistivity of PtHfSi to p+/n-Si(100) and n+/p-Si(100) such as 9.4×10-9Ωcm2 and 4.8×10-9Ωcm2, respectively, utilizing the dopant segregation process. The control of etching duration of HfN encapsulating layer is important to realize the high quality PtHfSi formation with low contact resistivity.

  • Electron Injection of N-type Pentacene-Based OFET with Nitrogen-Doped LaB6 Bottom-Contact Electrodes

    Yasutaka MAEDA  Mizuha HIROKI  Shun-ichiro OHMI  

     
    PAPER

      Vol:
    E101-C No:5
      Page(s):
    323-327

    In this study, the effect of nitrogen-doped (N-doped) LaB6 bottom-contact electrodes and interfacial layer (IL) on n-type pentacene-based organic field-effect transistor (OFET) was investigated. The scaled OFET was fabricated by using photolithography for bottom-contact electrodes. A 20-nm-thick N-doped LaB6 bottom-contact electrodes were formed on SiO2/n+-Si(100) substrate by RF sputtering followed by the surface treatment with sulfuric acid and hydrogen peroxide mixture (SPM) followed by diluted hydrofluoric acid (DHF; 1% HF) at room temperature (RT). Then, a 1.2-nm-thick N-doped LaB6 IL was deposited at RT. Finally, a 10-nm-thick pentacene film was deposited at 100°C followed by the Al back-gate electrode formation by using thermal evaporation. The current of electron injection was observed in the air due to the effect of surface treatment and N-doped LaB6 IL.

  • PdEr-Silicide Formation and Contact Resistivity Reduction to n-Si(100) Realized by Dopant Segregation Process

    Shun-ichiro OHMI  Yuya TSUKAMOTO  Weiguang ZUO  Yasushi MASAHIRO  

     
    PAPER

      Vol:
    E101-C No:5
      Page(s):
    311-316

    In this paper, we have investigated the PdEr-silicide formation utilizing a developed PdEr-alloy target for sputtering, and evaluated the contact resistivity of PdEr-silicide layer formed on n-Si(100) by dopant segregation process for the first time. Pd2Si and ErSi2 have same hexagonal structure, while the Schottky barrier height for electron (Φbn) is different as 0.75 eV and 0.28 eV, respectively. A 20 nm-thick PdEr-alloy layer was deposited on the n-Si(100) substrates utilizing a developed PdEr-alloy target by the RF magnetron sputtering at room temperature. Then, 10 nm-thick TiN encapsulating layer was in-situ deposited at room temperature. Next, silicidation was carried out by the RTA at 500 for 5 min in N2/4.9%H2 followed by the selective etching. From the J-V characteristics of fabricated Schottky diode, qΦbn was reduced from 0.75 eV of Pd2Si to 0.43 eV of PdEr-silicide. Furthermore, 4.0x10-8Ωcm2 was extracted for the PdEr-silicide to n-Si(100) by the dopant segregation process.

  • PdYb-Silicide with Low Schottky Barrier Height to n-Si Formed from Pd/Yb/Si(100) Stacked Structures

    Shun-ichiro OHMI  Mengyi CHEN  Weiguang ZUO  Yasushi MASAHIRO  

     
    PAPER

      Vol:
    E100-C No:5
      Page(s):
    458-462

    In this paper, we have investigated the characteristics of PdYb-silicide layer formed by the silicidation of Pd/Yb/n-Si(100) stacked structures for the first time. Pd (12-20 nm)/Yb (0-8 nm) stacked layers were deposited on n-Si(100) substrates by the RF magnetron sputtering at room temperature. Then, 10 nm-thick HfN encapsulating layer was deposited at room temperature. Next, silicidation was carried out by the RTA at 500°C/1 min in N2 followed by the selective etching. From the J-V characteristics of fabricated Schottky diode, Schottky barrier height (SBH) for electron was reduced from 0.73 eV of Pd2Si to 0.4 eV of PdYb-silicide in case the Pd/Yb thicknesses were 14/6 nm, respectively.

  • Separation by Bonding Si Islands (SBSI) for Advanced CMOS LSI Applications

    Takashi YAMAZAKI  Shun-ichiro OHMI  Shinya MORITA  Hiroyuki OHRI  Junichi MUROTA  Masao SAKURABA  Hiroo OMI  Tetsushi SAKAI  

     
    PAPER-Si Devices and Processes

      Vol:
    E88-C No:4
      Page(s):
    656-661

    We have developed separation by bonding Si islands (SBSI) process for advanced CMOS LSI applications. In this process, the Si islands that become the SOI regions are formed by selective etching of the SiGe layer in the Si/SiGe stacked layers, and those are bonded to the Si substrate with the thermal oxide layers by furnace annealing. The etching selectivity for SiGe/Si and surface roughness after the SiGe etching were found to be improved by decreasing the HNO3 concentration in the etching solution. The thicknesses of the fabricated Si island and the buried oxide layer also became uniform by decreasing the HNO3 concentration. In addition, it was found that the space formed by SiGe etching in the Si/SiGe stacked layers was able to be filled with the thermal oxide layer without furnace annealing.

  • MFSFET with 5nm Thick Ferroelectric Nondoped HfO2 Gate Insulator Utilizing Low Power Sputtering for Pt Gate Electrode Deposition

    Joong-Won SHIN  Masakazu TANUMA  Shun-ichiro OHMI  

     
    PAPER

      Pubricized:
    2022/06/27
      Vol:
    E105-C No:10
      Page(s):
    578-583

    In this research, we investigated the metal-ferroelectric-semiconductor field-effect transistors (MFSFETs) with 5nm thick nondoped HfO2 gate insulator by decreasing the sputtering power for Pt gate electrode deposition. The leakage current was effectively reduced to 2.6×10-8A/cm2 at the voltage of -1.5V by the sputtering power of 40W for Pt electrode deposition. Furthermore, the memory window (MW) of 0.53V and retention time over 10 years were realized.

  • PtHf Silicide Formation Utilizing PtHf-Alloy Target for Low Contact Resistivity

    Shun-ichiro OHMI  Mengyi CHEN  Xiaopeng WU  Yasushi MASAHIRO  

     
    PAPER

      Vol:
    E99-C No:5
      Page(s):
    510-515

    We have investigated PtHf silicide formation utilizing a developed PtHf-alloy target to realize low contact resistivity for the first time. A 20 nm-thick PtHf-alloy thin film was deposited on the n-Si(100) by RF magnetron sputtering at room temperature. Then, silicidation was carried out by rapid thermal annealing (RTA) system at 450-600°C/5 min in N2/4.9%H2 ambient. The PtHf-alloy silcide, PtHfSi, layers were successfully formed, and the Schottky barrier height (SBH) for electron of 0.45 eV was obtained by 450°C silicidation. Furthermore, low contact resistivity was achieved for fabricated PtHSi such as 8.4x10-8 Ωcm2 evaluated by cross-bridge Kelvin resistor (CBKR) method.

  • Modulation of PtSi Work Function by Alloying with Low Work Function Metal

    Jun GAO  Jumpei ISHIKAWA  Shun-ichiro OHMI  

     
    PAPER

      Vol:
    E94-C No:5
      Page(s):
    775-779

    In order to reduce PtSi Schottky barrier height (SBH) for electron, we investigated modulation of PtSi work function by alloying with low work function metal, such as Hf (3.9 eV) and Yb (2.7 eV). Pt (10-20 nm)/Hf, Yb (0-10 nm)/n-Si(100) stacked structures were in-situ deposited at room temperature by RF magnetron sputtering method. In case of PtxHf1 - xSi formed at 400/60 min annealing in N2, SBH for electron was reduced from 0.85 eV to 0.53 eV with Hf thickness without increase of sheet resistance. Yb incorporation also affected the SBH modulation, however, the sheet resistance increased with increase of Yb thickness.

  • A Study on Substrate Orientation Dependence of Si Surface Flattening Process by Sacrificial Oxidation and Its Effect on MIS Diode Characteristics

    Sohya KUDOH  Shun-ichiro OHMI  

     
    PAPER

      Vol:
    E99-C No:5
      Page(s):
    504-509

    In this study, we investigated Si(100), Si(110) and Si(111) surface flattening process utilizing sacrificial oxidation method, and its effect on Metal-Insulator-Semiconductor (MIS) diode characteristics. By the etching of the 100 nm-thick sacrificial oxide formed by thermal oxidation at 1100°C, the surface roughness of Si(100), Si(110) and Si(111) substrates were reduced. The obtained Root-Mean-Square (RMS) roughness of Si(100) was reduced from 0.22 nm (as-cleaned) to 0.07 nm (after etching), while it was reduced from 0.23 nm to 0.12 nm in the case of Si(110), and from 0.23 nm to 0.11 nm in the case of Si(111), respectively. Furthermore, it was found that time-dependent dielectric breakdown (TDDB) characteristics of MIS diodes for p-Si(100), p-Si(110) and p-Si(111) were improved with the reduction of Si surface RMS roughness.

  • A Study on Si(100) Surface Flattening Utilizing Sacrificial Oxidation Process and Its Effect on MIS Diode Characteristics

    Sohya KUDOH  Shun-ichiro OHMI  

     
    PAPER

      Vol:
    E98-C No:5
      Page(s):
    402-405

    In this study, Si(100) surface flattening process was investigated utilizing sacrificial oxidation method to improve Metal--Insulator--Semiconductor (MIS) diode characteristics. By etching of the 100,nm-thick sacrificial oxide formed by thermal oxidation at 1100$^{circ}$C, the surface roughness of Si substrate was reduced. The obtained Root-Mean-Square (RMS) roughness was decreased from 0.15,nm (as-cleaned) to 0.07,nm in the case of sacrificial oxide formed by wet oxidation, while it was 0.10,nm in the case of dry oxidation. Furthermore, time-dependent dielectric breakdown (TDDB) characteristic of Al/SiO$_{2}$(10,nm)/p-Si(100) MIS diode structures was found to be improved by the reduction of Si surface RMS roughness.

  • High Quality Pentacene Film Formation on N-Doped LaB6 Donor Layer

    Yasutaka MAEDA  Shun-ichiro OHMI  Tetsuya GOTO  Tadahiro OHMI  

     
    PAPER

      Vol:
    E99-C No:5
      Page(s):
    535-540

    In this research, we have investigated the deposition condition of pentacene film on nitrogen doped (N-doped) LaB6 donor layer for larger grain growth at the channel region for bottom-contact type pentacene-based organic field-effect transistors (OFETs) to improve the device characteristics. Source and drain bottom-contacts of Al were patterned and 2nm-thick N-doped LaB6 donor layer was deposited on the SiO2/Si(100) back-gate structure. The dendritic grain growth of pentacene larger than 10µm without lamellar grain growth was demonstrated when the deposition temperature and rate were 100°C and 0.5nm/min, respectively. Furthermore, it was found that the dendritic grain growth was realized at the boundary region of bottom-contact as well as channel region.

  • A Proposal of TC-MOSFET and Fabrication Process of Twin Si Channels

    Shun-ichiro OHMI  Tetsushi SAKAI  

     
    PAPER-Novel MOSFET Structures

      Vol:
    E90-C No:5
      Page(s):
    994-999

    Twin-Channel (TC)-MOSFET with twin omega-gate (Ω-gate) Si channels and its fabrication process were proposed. The twin Si channels are able to be fabricated by self-aligned process utilizing wet etching of SiN and silicon-on-insulator (SOI) wafers. Three-dimensional (3-D) device simulation was performed to optimize gate structure for TC-MOSFET with 10 nm10 nm (TSiWG) channels with the gate length of 30 nm, and it was found that TC-MOSFET with right-angled Ω-gate in case the Lunder was 3 nm showed excellent device characteristics similar to the gate-all-around (GAA) devices corresponding to the gate structure as Lunder=5 nm. Fabrication process of twin Si channels was also investigated experimentally, and approximately 40 nm40 nm twin Si channels were successfully fabricated on SOI by the proposed fabrication process.

  • Ferroelectric Gate Field-Effect Transistors with 10nm Thick Nondoped HfO2 Utilizing Pt Gate Electrodes

    Min Gee KIM  Masakazu KATAOKA  Rengie Mark D. MAILIG  Shun-ichiro OHMI  

     
    PAPER-Electronic Materials

      Vol:
    E103-C No:6
      Page(s):
    280-285

    Ferroelectric gate field-effect transistors (MFSFETs) were investigated utilizing nondoped HfO2 deposited by RF magnetron sputtering utilizing Hf target. After the post-metallization annealing (PMA) process with Pt top gate at 500°C/30s, ferroelectric characteristic of 10nm thick nondoped HfO2 was obtained. The fabricated MFSFETs showed the memory window of 1.7V when the voltage sweep range was from -3 to 3V.

  • The Evaluation of the Interface Properties of PdEr-Silicide on Si(100) Formed with TiN Encapsulating Layer and Dopant Segregation Process

    Rengie Mark D. MAILIG  Min Gee KIM  Shun-ichiro OHMI  

     
    PAPER-Electronic Materials

      Vol:
    E103-C No:6
      Page(s):
    286-292

    In this paper, the effects of the TiN encapsulating layer and the dopant segregation process on the interface properties and the Schottky barrier height reduction of PdEr-silicide/n-Si(100) were investigated. The results show that controlling the initial location of the boron dopants by adding the TiN encapsulating layer lowered the Schottky barrier height (SBH) for hole to 0.20 eV. Furthermore, the density of interface states (Dit) on the order of 1011eV-1cm-2 was obtained indicating that the dopant segregation process with TiN encapsulating layer effectively annihilated the interface states.

  • In-Situ N2-Plasma Nitridation for High-k HfN Gate Insulator Formed by Electron Cyclotron Resonance Plasma Sputtering

    Shun-ichiro OHMI  Shin ISHIMATSU  Yuske HORIUCHI  Sohya KUDOH  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E103-C No:6
      Page(s):
    299-303

    We have investigated the in-situ N2-plasma nitridation for high-k HfN gate insulator formed by electron cyclotron resonance (ECR) plasma sputtering to improve the electrical characteristics. It was found that the increase of nitridation gas pressure for the deposited HfN1.1 gate insulator, such as 98 mPa, decreased both the hysteresis width in C-V characteristics and leakage current. Furthermore, the 2-step nitiridation process with the nitridation gas pressure of 26 mPa followed by the nitridation at 98 mPa realized the decrease of equivalent oxide thickness (EOT) to 0.9 nm with decreasing the hysteresis width and leakage current. The fabricated metal-insulator-semiconductor field-effect transistor (MISFET) with 2-step nitridation showed a steep subthreshold swing of 87 mV/dec.

  • Low Temperature Formation of Pd2Si with TiN Encapsulating Layer and Its Application to Dopant Segregation Process

    Rengie Mark D. MAILIG  Shun-ichiro OHMI  

     
    PAPER

      Vol:
    E102-C No:6
      Page(s):
    447-452

    We investigated the low temperature formation of Pd2Si on Si(100) with TiN encapsulating layer formed at 500°C/1 min. Furthermore, the dopant segregation process was performed with ion dose of 1x1015 cm-2 for B+. The uniform Pd2Si was successfully formed with low sheet resistance of 10.4 Ω/sq. Meanwhile, the PtSi formed on Si(100) showed rough surface morphology if the silicidation temperature was 500°C. The estimated Schottky barrier height to hole of 0.20 eV (qφBp) was realized for n-Si(100).

  • Flattening Process of Si Surface below 1000 Utilizing Ar/4.9%H2 Annealing and Its Effect on Ultrathin HfON Gate Insulator Formation

    Dae-Hee HAN  Shun-ichiro OHMI  

     
    PAPER

      Vol:
    E96-C No:5
      Page(s):
    669-673

    To improve metal oxide semiconductor field effect transistors (MOSFET) performance, flat interface between gate insulator and silicon should be realized. In this paper, flattening process of Si surface below 1000 utilizing Ar/4.9%H2 annealing and its effect on ultrathin HfON gate insulator formation were investigated. The Si(100) substrates were annealed using conventional rapid thermal annealing (RTA) system in Ar or Ar/4.9%H2 ambient for 1 h. The surface roughness of Ar/4.9%H2-annealed Si was small compared to that of Ar-annealed Si because the surface oxidation was suppressed. The obtained root mean square (RMS) roughness was 0.08 nm (as-cleaned: 0.20 nm) in case of Ar/4.9%H2-annealed at 1000 measured by tapping mode atomic force microscopy (AFM). The HfON surface was also able to be flattened by reduction of Si surface roughness. The electrical properties of HfON gate insulator were improved by the reduction of Si surface roughness. We obtained equivalent oxide thickness (EOT) of 0.79 nm (as-cleaned: 1.04 nm) and leakage current density of 3.510-3 A/cm2 (as-cleaned: 6.110 -1 A/cm2) by reducing the Si surface roughness.

1-20hit(32hit)