The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] (42807hit)

2181-2200hit(42807hit)

  • Efficient Algorithm to Compute Odd-Degree Isogenies Between Montgomery Curves for CSIDH Open Access

    Kenta KODERA  Chen-Mou CHENG  Atsuko MIYAJI  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2021/03/23
      Vol:
    E104-A No:9
      Page(s):
    1245-1254

    Isogeny-based cryptography, such as commutative supersingular isogeny Diffie-Hellman (CSIDH), have been shown to be promising candidates for post-quantum cryptography. However, their speeds have remained unremarkable. This study focuses on computing odd-degree isogeny between Montgomery curves, which is a dominant computation in CSIDH. Our proposed “2-ADD-Skip method” technique reduces the required number of points to be computed during isogeny computation. A novel algorithm for isogeny computation is also proposed to efficiently utilize the 2-ADD-Skip method. Our proposed algorithm with the optimized parameter reduces computational cost by approximately 12% compared with the algorithm proposed by Meyer and Reith. Further, individual experiments for each degree of isogeny ℓ show that the proposed algorithm is the fastest for 19≤ℓ≤373 among previous studies focusing on isogeny computation including the Õ(√ℓ) algorithm proposed by Bernstein et al. The experimental results also show that the proposed algorithm achieves the fastest on CSIDH-512. For CSIDH-1024, the proposed algorithm is faster than the algorithm by Meyer and Reith although it is slower than the algorithm by Bernstein et al.

  • Compression Scan Strategy For Fast Refresh Rate on SXGA OLEDoS Microdisplay

    Aiying GUO  Feng RAN  Jianhua ZHANG  

     
    PAPER-Electronic Circuits

      Pubricized:
    2021/02/26
      Vol:
    E104-C No:9
      Page(s):
    455-462

    In order to upgrade the refresh rate about High-Resolution (1280×1024) OLED-on-Silicon (OLEDoS) microdisplay, this paper discusses one compression scan strategy by reducing scan time redundancy. This scan strategy firstly compresses the low-bit gray level scan serial as one unit; second, the scan unit is embedded into the high-bit gray level serial and new scan sequence is generated. Furthermore, micro-display platform is designed to verify the scan strategy performance. The experiment shows that this scan strategy can deal with 144Hz refresh rate, which is obviously faster than the traditional scan strategy.

  • Effects of Oscillator Phase Noise on Frequency Delta Sigma Modulators with a High Oversampling Ratio for Sensor Applications

    Koichi MAEZAWA  Masayuki MORI  

     
    BRIEF PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2021/03/15
      Vol:
    E104-C No:9
      Page(s):
    463-466

    Frequency delta sigma modulation (FDSM) is a unique analog to digital conversion technique featuring large dynamic range with wide frequency band width. It can be used for high performance digital-output sensors, if the oscillator in the FDSM is replaced by a variable frequency oscillator whose frequency depends on a certain external physical quantity. One of the most important parameters governing the performance of these sensors is a phase noise of the oscillator. The phase noise is an essential error source in the FDSM, and it is quite important for this type of sensors because they use a high frequency oscillator and an extremely large oversampling ratio. In this paper, we will discuss the quantitative effects of the phase noise on the FDSM output on the basis of a simple model. The model was validated with experiments for three types of oscillators.

  • Sum Rate Maximization for Cooperative NOMA with Hardware Impairments

    Xiao-yu WAN  Rui-fei CHANG  Zheng-qiang WANG  Zi-fu FAN  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2021/05/28
      Vol:
    E104-D No:9
      Page(s):
    1399-1405

    This paper investigates the sum rate (SR) maximization problem for downlink cooperative non-orthogonal multiple access (C-NOMA) systems with hardware impairments (HIs). The source node communicates with users via a half-duplex amplified-and-forward (HD-AF) relay with HIs. First, we derive the SR expression of the systems under HIs. Then, SR maximization problem is formulated under maximum power of the source, relay, and the minimum rate constraint of each user. As the original SR maximization problem is a non-convex problem, it is difficult to find the optimal resource allocation directly by tractional convex optimization method. We use variable substitution method to convert the non-convex SR maximization problem to an equivalent convex optimization problem. Finally, a joint power and rate allocation based on interior point method is proposed to maximize the SR of the systems. Simulation results show that the algorithm can improve the SR of the C-NOMA compared with the cooperative orthogonal multiple access (C-OMA) scheme.

  • Mitigating Congestion with Explicit Cache Placement Notification for Adaptive Video Streaming over ICN

    Rei NAKAGAWA  Satoshi OHZAHATA  Ryo YAMAMOTO  Toshihiko KATO  

     
    PAPER-Information Network

      Pubricized:
    2021/06/18
      Vol:
    E104-D No:9
      Page(s):
    1406-1419

    Recently, information centric network (ICN) has attracted attention because cached content delivery from router's cache storage improves quality of service (QoS) by reducing redundant traffic. Then, adaptive video streaming is applied to ICN to improve client's quality of experience (QoE). However, in the previous approaches for the cache control, the router implicitly caches the content requested by a user for the other users who may request the same content subsequently. As a result, these approaches are not able to use the cache effectively to improve client's QoE because the cached contents are not always requested by the other users. In addition, since the previous cache control does not consider network congestion state, the adaptive bitrate (ABR) algorithm works incorrectly and causes congestion, and then QoE degrades due to unnecessary congestion. In this paper, we propose an explicit cache placement notification for congestion-aware adaptive video streaming over ICN (CASwECPN) to mitigate congestion. CASwECPN encourages explicit feedback according to the congestion detection in the router on the communication path. While congestion is detected, the router caches the requested content to its cache storage and explicitly notifies the client that the requested content is cached (explicit cache placement and notification) to mitigate congestion quickly. Then the client retrieve the explicitly cached content in the router detecting congestion according to the general procedures of ICN. The simulation experiments show that CASwECPN improves both QoS and client's QoE in adaptive video streaming that adjusts the bitrate adaptively every video segment download. As a result, CASwECPN effectively uses router's cache storage as compared to the conventional cache control policies.

  • Learning Dynamic Systems Using Gaussian Process Regression with Analytic Ordinary Differential Equations as Prior Information

    Shengbing TANG  Kenji FUJIMOTO  Ichiro MARUTA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/06/01
      Vol:
    E104-D No:9
      Page(s):
    1440-1449

    Recently the data-driven learning of dynamic systems has become a promising approach because no physical knowledge is needed. Pure machine learning approaches such as Gaussian process regression (GPR) learns a dynamic model from data, with all physical knowledge about the system discarded. This goes from one extreme, namely methods based on optimizing parametric physical models derived from physical laws, to the other. GPR has high flexibility and is able to model any dynamics as long as they are locally smooth, but can not generalize well to unexplored areas with little or no training data. The analytic physical model derived under assumptions is an abstract approximation of the true system, but has global generalization ability. Hence the optimal learning strategy is to combine GPR with the analytic physical model. This paper proposes a method to learn dynamic systems using GPR with analytic ordinary differential equations (ODEs) as prior information. The one-time-step integration of analytic ODEs is used as the mean function of the Gaussian process prior. The total parameters to be trained include physical parameters of analytic ODEs and parameters of GPR. A novel method is proposed to simultaneously learn all parameters, which is realized by the fully Bayesian GPR and more promising to learn an optimal model. The standard Gaussian process regression, the ODE method and the existing method in the literature are chosen as baselines to verify the benefit of the proposed method. The predictive performance is evaluated by both one-time-step prediction and long-term prediction. By simulation of the cart-pole system, it is demonstrated that the proposed method has better predictive performances.

  • Character Design Generation System Using Multiple Users' Gaze Information

    Hiroshi TAKENOUCHI  Masataka TOKUMARU  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2021/05/25
      Vol:
    E104-D No:9
      Page(s):
    1459-1466

    We investigate an interactive evolutionary computation (IEC) using multiple users' gaze information when users partially participate in each design evaluation. Many previous IEC systems have a problem that user evaluation loads are too large. Hence, we proposed to employ user gaze information for evaluating designs generated by IEC systems in order to solve this problem. In this proposed system, users just view the presented designs, not assess, then the system automatically creates users' favorite designs. With the user's gaze information, the proposed system generates coordination that can satisfy many users. In our previous study, we verified the effectiveness of the proposed system from a real system operation viewpoint. However, we did not consider the fluctuation of the users during a solution candidate evaluation. In the actual operation of the proposed system, users may change during the process due to the user interchange. Therefore, in this study, we verify the effectiveness of the proposed system when varying the users participating in each evaluation for each generation. In the experiment, we employ two types of situations as assumed in real environments. The first situation changes the number of users evaluating the designs for each generation. The second situation employs various users from the predefined population to evaluate the designs for each generation. From the experimental results in the first situation, we confirm that, despite the change in the number of users during the solution candidate evaluation, the proposed system can generate coordination to satisfy many users. Also, from the results in the second situation, we verify that the proposed system can also generate coordination which both users who participate in the coordination evaluation can more satisfy.

  • Gated Convolutional Neural Networks with Sentence-Related Selection for Distantly Supervised Relation Extraction

    Yufeng CHEN  Siqi LI  Xingya LI  Jinan XU  Jian LIU  

     
    PAPER-Natural Language Processing

      Pubricized:
    2021/06/01
      Vol:
    E104-D No:9
      Page(s):
    1486-1495

    Relation extraction is one of the key basic tasks in natural language processing in which distant supervision is widely used for obtaining large-scale labeled data without expensive labor cost. However, the automatically generated data contains massive noise because of the wrong labeling problem in distant supervision. To address this problem, the existing research work mainly focuses on removing sentence-level noise with various sentence selection strategies, which however could be incompetent for disposing word-level noise. In this paper, we propose a novel neural framework considering both intra-sentence and inter-sentence relevance to deal with word-level and sentence-level noise from distant supervision, which is denoted as Sentence-Related Gated Piecewise Convolutional Neural Networks (SR-GPCNN). Specifically, 1) a gate mechanism with multi-head self-attention is adopted to reduce word-level noise inside sentences; 2) a soft-label strategy is utilized to alleviate wrong-labeling propagation problem; and 3) a sentence-related selection model is designed to filter sentence-level noise further. The extensive experimental results on NYT dataset demonstrate that our approach filters word-level and sentence-level noise effectively, thus significantly outperforms all the baseline models in terms of both AUC and top-n precision metrics.

  • HTTP DDoS Flooding Attack Mitigation in Software-Defined Networking

    Sungho PARK  Youngjun KIM  Hyungoo CHOI  Yeunwoong KYUNG  Jinwoo PARK  

     
    LETTER-Information Network

      Pubricized:
    2021/06/04
      Vol:
    E104-D No:9
      Page(s):
    1496-1499

    HTTP Distributed Denial of Service (DDoS) flooding attack aims to deplete the connection resources of a targeted web server by transmitting a massive amount of HTTP request packets using botnets. This type of attack seriously deteriorates the service quality of the web server by tying up its connection resources and uselessly holds up lots of network resources like link capacity and switching capability. This paper proposes a defense method for mitigating HTTP DDoS flooding attack based on software-defined networking (SDN). It is demonstrated in this paper that the proposed method can effectively defend the web server and preserve network resources against HTTP DDoS flooding attacks.

  • Enhanced Sender-Based Message Logging for Reducing Forced Checkpointing Overhead in Distributed Systems

    Jinho AHN  

     
    LETTER-Dependable Computing

      Pubricized:
    2021/06/08
      Vol:
    E104-D No:9
      Page(s):
    1500-1505

    The previous communication-induced checkpointing may considerably induce worthless forced checkpoints because each process receiving messages cannot obtain sufficient information related to non-causal Z-paths. This paper presents an enhanced sender-based message logging protocol applicable to any communication-induced checkpointing to lead to a high decrease of the forced checkpointing overhead of communication-induced checkpointing in an effective way while permitting no useless checkpoint. The protocol allows each process sending a message to know the exact timestamp of the receiver of the message in its logging procedures without any extra message. Simulation verifies their great efficiency of overhead alleviation regardless of communication patterns.

  • Computing the Winner of 2-Player TANHINMIN

    Hironori KIYA  Katsuki OHTO  Hirotaka ONO  

     
    PAPER-Algorithms and Data Structures

      Pubricized:
    2021/02/10
      Vol:
    E104-A No:9
      Page(s):
    1134-1141

    DAIHINMIN, which means Grand Pauper, is a popular playing-card game in Japan. TANHINMIN is a simplified variant of DAIHINMIN, which was proposed by Nishino in 2007 in order to investigate the mathematical properties of DAIHINMIN. In this paper, we consider a 2-player generalized TANHINMIN, where the deck size is arbitrary n. We present a linear-time algorithm that determines which player has a winning strategy after all cards are distributed to the players.

  • Max-Min 3-Dispersion Problems Open Access

    Takashi HORIYAMA  Shin-ichi NAKANO  Toshiki SAITOH  Koki SUETSUGU  Akira SUZUKI  Ryuhei UEHARA  Takeaki UNO  Kunihiro WASA  

     
    PAPER-Algorithms and Data Structures

      Pubricized:
    2021/03/19
      Vol:
    E104-A No:9
      Page(s):
    1101-1107

    Given a set P of n points on which facilities can be placed and an integer k, we want to place k facilities on some points so that the minimum distance between facilities is maximized. The problem is called the k-dispersion problem. In this paper, we consider the 3-dispersion problem when P is a set of points on a plane (2-dimensional space). Note that the 2-dispersion problem corresponds to the diameter problem. We give an O(n) time algorithm to solve the 3-dispersion problem in the L∞ metric, and an O(n) time algorithm to solve the 3-dispersion problem in the L1 metric. Also, we give an O(n2 log n) time algorithm to solve the 3-dispersion problem in the L2 metric.

  • Chromatic Art Gallery Problem with r-Visibility is NP-Complete

    Chuzo IWAMOTO  Tatsuaki IBUSUKI  

     
    PAPER-Algorithms and Data Structures

      Pubricized:
    2021/03/26
      Vol:
    E104-A No:9
      Page(s):
    1108-1115

    The art gallery problem is to find a set of guards who together can observe every point of the interior of a polygon P. We study a chromatic variant of the problem, where each guard is assigned one of k distinct colors. The chromatic art gallery problem is to find a guard set for P such that no two guards with the same color have overlapping visibility regions. We study the decision version of this problem for orthogonal polygons with r-visibility when the number of colors is k=2. Here, two points are r-visible if the smallest axis-aligned rectangle containing them lies entirely within the polygon. In this paper, it is shown that determining whether there is an r-visibility guard set for an orthogonal polygon with holes such that no two guards with the same color have overlapping visibility regions is NP-hard when the number of colors is k=2.

  • Research on Map Folding with Boundary Order on Simple Fold Open Access

    Yiyang JIA  Jun MITANI  Ryuhei UEHARA  

     
    PAPER-Algorithms and Data Structures

      Pubricized:
    2021/03/08
      Vol:
    E104-A No:9
      Page(s):
    1116-1126

    Folding an m×n square grid pattern along the edges of a grid is called map folding. We consider a decision problem in terms of whether a partial overlapping order of the squares aligning on the boundary of an m×n map is valid in a particular fold model called simple fold. This is a variation of the decision problem of valid total orders of the map in a simple fold model. We provide a linear-time algorithm to solve this problem, by defining an equivalence relation and computing the folding sequence sequentially, either uniquely or representatively.

  • Analysis of Lower Bounds for Online Bin Packing with Two Item Sizes

    Hiroshi FUJIWARA  Ken ENDO  Hiroaki YAMAMOTO  

     
    PAPER-Algorithms and Data Structures

      Pubricized:
    2021/03/09
      Vol:
    E104-A No:9
      Page(s):
    1127-1133

    In the bin packing problem, we are asked to place given items, each being of size between zero and one, into bins of capacity one. The goal is to minimize the number of bins that contain at least one item. An online algorithm for the bin packing problem decides where to place each item one by one when it arrives. The asymptotic approximation ratio of the bin packing problem is defined as the performance of an optimal online algorithm for the problem. That value indicates the intrinsic hardness of the bin packing problem. In this paper we study the bin packing problem in which every item is of either size α or size β (≤ α). While the asymptotic approximation ratio for $alpha > rac{1}{2}$ was already identified, that for $alpha leq rac{1}{2}$ is only partially known. This paper is the first to give a lower bound on the asymptotic approximation ratio for any $alpha leq rac{1}{2}$, by formulating linear optimization problems. Furthermore, we derive another lower bound in a closed form by constructing dual feasible solutions.

  • Convex Grid Drawings of Plane Graphs with Pentagonal Contours on O(n2) Grids

    Kei SATO  Kazuyuki MIURA  

     
    PAPER-Graphs and Networks

      Pubricized:
    2021/03/10
      Vol:
    E104-A No:9
      Page(s):
    1142-1149

    In a convex grid drawing of a plane graph, all edges are drawn as straight-line segments without any edge-intersection, all vertices are put on grid points and all facial cycles are drawn as convex polygons. A plane graph G has a convex drawing if and only if G is internally triconnected, and an internally triconnected plane graph G has a convex grid drawing on an (n-1)×(n-1) grid if either G is triconnected or the triconnected component decomposition tree T(G) of G has two or three leaves, where n is the number of vertices in G. An internally triconnected plane graph G has a convex grid drawing on a 2n×2n grid if T(G) has exactly four leaves. Furthermore, an internally triconnected plane graph G has a convex grid drawing on a 6n×n2 grid if T(G) has exactly five leaves. In this paper, we show that an internally triconnected plane graph G has a convex grid drawing on a 20n×16n grid if T(G) has exactly five leaves. We also present an algorithm to find such a drawing in linear time. This is the first algorithm that finds a convex grid drawing of such a plane graph G in a grid of O(n2) size.

  • Impossibility on the Schnorr Signature from the One-More DL Assumption in the Non-Programmable Random Oracle Model Open Access

    Masayuki FUKUMITSU  Shingo HASEGAWA  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2021/03/08
      Vol:
    E104-A No:9
      Page(s):
    1163-1174

    The Schnorr signature is one of the representative signature schemes and its security was widely discussed. In the random oracle model (ROM), it is provable from the DL assumption, whereas there is negative circumstantial evidence in the standard model. Fleischhacker, Jager, and Schröder showed that the tight security of the Schnorr signature is unprovable from a strong cryptographic assumption, such as the One-More DL (OM-DL) assumption and the computational and decisional Diffie-Hellman assumption, in the ROM via a generic reduction as long as the underlying cryptographic assumption holds. However, it remains open whether or not the impossibility of the provable security of the Schnorr signature from a strong assumption via a non-tight and reasonable reduction. In this paper, we show that the security of the Schnorr signature is unprovable from the OM-DL assumption in the non-programmable ROM as long as the OM-DL assumption holds. Our impossibility result is proven via a non-tight Turing reduction.

  • Performance of Circular 32QAM/64QAM Schemes Using Frequency Domain Equalizer for DFT-Precoded OFDM

    Chihiro MORI  Miyu NAKABAYASHI  Mamoru SAWAHASHI  Teruo KAWAMURA  Nobuhiko MIKI  

     
    PAPER

      Pubricized:
    2021/03/17
      Vol:
    E104-B No:9
      Page(s):
    1054-1066

    This paper presents the average block error rate (BLER) performance of circular 32QAM and 64QAM schemes employing a frequency domain equalizer (FDE) for discrete Fourier transform (DFT)-precoded orthogonal frequency division multiplexing (OFDM) in multipath Rayleigh fading channels. The circular QAM scheme has an advantageous feature in that the fluctuation in the amplitude component is smaller than that for the cross or rectangular QAM scheme. Hence, focusing on the actual received signal-to-noise power ratio (SNR) taking into account a realistic peak-to-average power ratio (PAPR) measure called the cubic metric (CM), we compare the average BLER of the circular 32QAM and 64QAM schemes with those of cross 32QAM and rectangular 64QAM schemes, respectively. We investigate the theoretical throughput of various circular 32QAM and 64QAM schemes based on mutual information from the viewpoint of the minimum Euclidean distance. Link-level simulation results show that the circular 32QAM and 64QAM schemes with independent bit mapping for the phase and amplitude modulations achieves a lower required average received SNR considering the CM than that with the minimum Euclidean distance but with composite mapping of the phase and amplitude modulations. Through extensive link-level simulations, we show the potential benefit of the circular 32QAM and 64QAM schemes in terms of reducing the required average received SNR considering the CM that satisfies the target average BLER compared to the cross 32QAM or rectangular 64QAM scheme.

  • Indifferentiability of SKINNY-HASH Internal Functions

    Akinori HOSOYAMADA  Tetsu IWATA  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2021/03/10
      Vol:
    E104-A No:9
      Page(s):
    1156-1162

    We provide a formal proof for the indifferentiability of SKINNY-HASH internal function from a random oracle. SKINNY-HASH is a family of sponge-based hash functions that use functions (instead of permutations) as primitives, and it was selected as one of the second round candidates of the NIST lightweight cryptography competition. Its internal function is constructed from the tweakable block cipher SKINNY. The construction of the internal function is very simple and the designers claim n-bit security, where n is the block length of SKINNY. However, a formal security proof of this claim is not given in the original specification of SKINNY-HASH. In this paper, we formally prove that the internal function of SKINNY-HASH has n-bit security, i.e., it is indifferentiable from a random oracle up to O(2n) queries, substantiating the security claim of the designers.

  • Optic Disc Detection Based on Saliency Detection and Attention Convolutional Neural Networks

    Ying WANG  Xiaosheng YU  Chengdong WU  

     
    LETTER-Image

      Pubricized:
    2021/03/23
      Vol:
    E104-A No:9
      Page(s):
    1370-1374

    The automatic analysis of retinal fundus images is of great significance in large-scale ocular pathologies screening, of which optic disc (OD) location is a prerequisite step. In this paper, we propose a method based on saliency detection and attention convolutional neural network for OD detection. Firstly, the wavelet transform based saliency detection method is used to detect the OD candidate regions to the maximum extent such that the intensity, edge and texture features of the fundus images are all considered into the OD detection process. Then, the attention mechanism that can emphasize the representation of OD region is combined into the dense network. Finally, it is determined whether the detected candidate regions are OD region or non-OD region. The proposed method is implemented on DIARETDB0, DIARETDB1 and MESSIDOR datasets, the experimental results of which demonstrate its superiority and robustness.

2181-2200hit(42807hit)