The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] (42756hit)

38721-38740hit(42756hit)

  • A Fast Automatic Fingerprint Identification Method Based on a Weighted-Mean of Binary Image

    Yu HE  Ryuji KOHNO  Hideki IMAI  

     
    PAPER

      Vol:
    E76-A No:9
      Page(s):
    1469-1482

    This paper first proposes a fast fingerprint identification method based on a weighted-mean of binary image, and further investigates optimization of the weights. The proposed method uses less computer memory than the conventional pattern matching method, and takes less computation time than both the feature extraction method and the pattern matching method. It is particularly effective on the fingerprints with a small angle of inclination. In order to improve the identification precision of the proposed basic method, three schemes of modifying the proposed basic method are also proposed. The performance of the proposed basic method and its modified schemes is evaluated by theoretical analysis and computer experiment using the fingerprint images recorded from a fingerprint read-in device. The numerical results showed that the proposed method using the modified schemes can improve both the true acceptance rate and the false rejection rate with less memory and complexity in comparison with the conventional pattern matching method and the feature extraction method.

  • Microwave and Millimeter-Wave Fiber Optic Technologies for Subcarrier Transmission Systems

    Hiroyo OGAWA  

     
    INVITED PAPER

      Vol:
    E76-B No:9
      Page(s):
    1078-1090

    This paper reviews fiber optic link techniques from the microwave and millimeter-wave transmission point of view. Several architectures of fiber optic links are reviewed. The application of MMIC technologies to the optical receivers are discussed and 26-GHz subcarrier transmission experimental works are described. Novel fiber optic links which utilize both optical device nonlinearities and microwave functional circuits are also reviewed. A system concept of millimeter-wave cellular radio using fiber optic links is finally discussed.

  • Coherent Optimisation Strategies for Multilevel Synthesis

    Khalid SAKOUTI  Pierre ABOUZEID  Michel CRASTES  Thierry BESSON  Jerome FRON  Gabrièle SAUCIER  

     
    PAPER-Logic Synthesis

      Vol:
    E76-D No:9
      Page(s):
    1093-1101

    This paper shows that coherent optimization strategies for multilevel systhesis should rely on a good link between the factorization, the technology mapping and the netlist optimization. Factorization options are shown to play a key role. The technology mapping should optimize both area and critical path and only netlist structure preserving" optimization techniques (buffer insertion, gate replication) should be applied first to preserve the factorization decision. Only in a last step resynthesis of critical areas based on a local view is applied. The approach has been experimented on a set of large combinational benchmarks.

  • A Polynomial Time Algorithm for Finding a Largest Common Subgraph of almost Trees of Bounded Degree

    Tatsuya AKUTSU  

     
    PAPER-Algorithms, Data Structures and Computational Complexity

      Vol:
    E76-A No:9
      Page(s):
    1488-1493

    This paper considers the problem of finding a largest common subgraph of graphs, which is an important problem in chemical synthesis. It is known that the problem is NP-hard even if graphs are restricted to planar graphs of vertex degree at most three. By the way, a graph is called an almost tree if E(B)V(B)+ K holds for every block B where K is a constant. In this paper, a polynomial time algorithm for finding a largest common subgraph of two graphs which are connected, almost trees and of bounded vertex degree. The algorithm is an extension of a subtree isomorphism algorithm which is based on dynamic programming. Moreover, it is shown that the degree bound is essential. That is, the problem of finding a largest common subgraph of two connected almost trees is proved to be NP-hard for any K0 if degree is not bounded. The three dimensional matching problem, a well known NP-complete problem, is reduced to the problem.

  • 0.15 µm Gate i-AlGaAs/n-GaAs HIGFET with a 13.3 S/Vcm K-Value

    Hidetoshi MATSUMOTO  Yasunari UMEMOTO  Yoshihisa OHISHI  Mitsuharu TAKAHAMA  Kenji HIRUMA  Hiroto ODA  Masaru MIYAZAKI  Yoshinori IMAMURA  

     
    PAPER

      Vol:
    E76-C No:9
      Page(s):
    1373-1378

    We have developed a new HIGFET structure achieving an extremely high K-value of 13.3 S/Vcm with a gate length of 0.15 µm. Self-aligned ion implantation is excluded to suppress a short-channel effect. An i-GaAs cap layer and an n+-GaAs contact layer are employed to reduce source resistance. The threshold voltage shift is as small as 50 mV when the gate length is reduced from 1.5 µm to 0.15 µm. Source resistance is estimated to be 53 mΩcm. We have also developed a new fabrication process that can achieve a shorter gate length than the minimum size of lithography. This process utilizes an SiO2 sidewall formed on the n+-GaAs contact layer to reduce the gate length. A gate length of 0.15 µm can be achieved using 0.35 µm lithography.

  • Compaction of Test Sets for Combinational Circuits Based on Symbolic Fault Simulation

    Hiroyuki HIGUCHI  Nagisa ISHIURA  Shuzo YAJIMA  

     
    PAPER-Test

      Vol:
    E76-D No:9
      Page(s):
    1121-1127

    Since the time required for testing logic circuits is proportional to the number of test vectors, the size of test sets as well as test generation time is one of the most important factors to be considered in test generation. The size of test sets becomes an essential issue, especially for scan designed circuits, because of the need to shift a test vector serially into the scan path. In this paper, we propose new methods of generating compact test sets to detect al the irredundant single stuck-at faults in combinational circuits. The proposed algorithms calculate a test function for each fault which corresponds to the set of all test vectors for the fault and generate a compact test set by analyzing the test functions. The analysis is based on finding a test vector which detects the largest number of remaining faults. Since our methods select a test vector among all the test vectors, represented by a test function, for a target fault, smaller test sets can be generated, in general, than that by conventional test set compaction methods. The experimental results show that the size of test sets generated by our method is about one-third as large as that without compaction.

  • A Neural Network Model for Generating Intermittent Chaos

    Hideo MATSUDA  Akihiko UCHIYAMA  

     
    LETTER-Neural Networks

      Vol:
    E76-A No:9
      Page(s):
    1544-1547

    We derive the eigenvalue constraint for a neural network with three degrees of freedom. The result implies that the neural network needs a neuron with variable output function to generate chaos. It is also shown that the neuron with the special characteristics can be constructed by ordinary neurons.

  • Scalar Quantization Noise Analysis and Optimal Bit Allocation for Wavelet Pyramid Image Coding

    Jie CHEN  Shuichi ITOH  Takeshi HASHIMOTO  

     
    PAPER-Information Theory and Coding Theory

      Vol:
    E76-A No:9
      Page(s):
    1502-1514

    A complete analysis for the quantization noises and the reconstruction noises of the wavelet pyramid coding system is given. It is shown that in the (orthonormal) wavelet image coding system, there exists a simple and exact formula to compute the reconstruction mean-square-error (MSE) for any kind of quantization errors. Based on the noise analysis, an optimal bit allocation scheme which minimizes the system reconstruction distortion at a given rate is developed. The reconstruction distortion of a wavelet pyramid system is proved to be directly proportional to 2-2, where is a given bit rate. It is shown that, when the optimal bit allocation scheme is adopted, the reconstruction noises can be approximated to white noises. Particularly, it is shown that with only one known quantization MSE of a wavelet decomposition at any layer of the wavelet pyramid, all of the reconstruction MSE's and the quantization MSE's of the coding system can be easily calculated. When uniform quantizers are used, it is shown that at two successive layers of the wavelet pyramid, the optimal quantization step size is a half of its predecessor, which coincides with the resolution version of the wavelet pyramid decomposition. A comparison between wavelet-based image coding and some well-known traditional image coding methods is made by simulations, and the reasons why the wavelet-based image coding is superior to the traditional image coding are explained.

  • Performance Analysis of Idle-Signal Casting Multiple Access (ICMA) Protocols under Pure Rayleigh Fading and No Capture

    Kee Chaing CHUA  Te Cheng PANG  Kin Mun LYE  

     
    PAPER-Radio Communication

      Vol:
    E76-B No:9
      Page(s):
    1202-1218

    Markov chain models are used to derive the average stationary throughput and delay performance of Idle-Signal Casting Multiple Access (ICMA), with and without Failure Detection (/FD), protocols which are suitable for use in mobile packet radio local area networks, where propagation impairments are prevalent. The models consider the effects of pure Rayleigh fading on channel access and packet transmission. Numerical results, validated by computer simulations, are obtained that enable a quantitative study of the performance of the protocols. It is found that the performance of the ICMA/FD protocol is affected more significantly by fading on the base-to-mobile channel than is the performance of the ICMA protocol. In addition, performance improves with larger packet sizes eventhough such packets are more vulnerable to failure due to fading.

  • Quasi-Periodicity Route to Chaos in Josephson Transmission Line

    Toshihide TSUBATA  Hiroaki KAWABATA  Yoshiaki SHIRAO  Masaya HIRATA  Toshikuni NAGAHARA  Yoshio INAGAKI  

     
    LETTER-Nonlinear Phenomena and Analysis

      Vol:
    E76-A No:9
      Page(s):
    1548-1554

    This letter discusses a behavior of solitons in a Josephson junction transmission line which is described by a perturbed sine-Gordon equation. It is shown that a soliton wave leads a quasi-periodic break down route to chaos in a Josephson transmission line. This route show phase locking, quasi-periodic state, chaos and hyper chaos, and these phenomena are examined by using Poincar sections, circle map, rotation number, and so on.

  • Optimization of Sequential Synchronous Digital Circuits Using Structural Models

    Giovanni De MICHELI  

     
    INVITED PAPER-Logic Synthesis

      Vol:
    E76-D No:9
      Page(s):
    1018-1029

    We present algorithms for the optimization of sequential synchronous digital circuits using structural model, i.e. interconnections of combinational logic gates and synchronous registers. This approach contrasts traditional methods using state diagrams or transition tables and leveraging state minimization and encoding techniques. In particular, we model circuits by synchronous logic networks, that are weighted multigraphs representing interconnections of gates implementing scalar combinational functions. With this modeling style, area and path delays are explicit and their variation is easy to compute when circuit transformations are applied. Sequential logic optimization may target cycle-time or area minimization, possibly under area or cycle-time constraints. Optimization is performed by a sequence of transformations, directed to the desired goal. This paper describes the fundamental mechansms for transformations applicable to sequential circuits. We review first retiming and peripheral retiming techniques. The former method optimizes the position of the registers, while the latter repositions the registers to enlarge maximally the combinational region where combinational restructuring algorithms can be applied. We consider then synchronous algebraic and Boolean transformations, that blend combinational transformations with local retiming. Both classes of transformations require the representation of circuits by means of logic expressions with labeled variables, the labels representing discrete time-points. Algebraic transformations entail manipulation of time-labeled expressions with algebraic techniques. Boolean transformations exploit the properties of Boolean algebra and benefit from the knowledge of don't care conditions in the search for the best implementation of local functions. Expressing don't care conditions for sequential circuits is harder than for combinational circuits, because of the interaction of variables with different time labels. In addition, the feasibility of replacing a local function with another one may not always be verified by checking for the inclusion of the induced perturbation in local explicit don't care set. Indeed, the behavior of sequential circuits, that can be described appropriately by the relation between input and output traces, may require relational models to express don't care conditions. We describe a general formalism for sequential optimization by Boolean transformations, where the don't care conditions are expressed implicitly by synchronous recurrence equations. We present then an optimization method for this model, that can exploit degrees of freedom in optimization not possible for other methods, and hence providing solutions of possible superior quality. We conclude by summarizing the major features and limitations of optimization methods using structural models.

  • A New Neural Network Algorithm with the Orthogonal Optimized Parameters to Solve the Optimal Problems

    Dao Heng YU  Jiyou JIA  Shinsaku MORI  

     
    PAPER-Neural Networks

      Vol:
    E76-A No:9
      Page(s):
    1520-1526

    In this paper, a definitce relation between the TSP's optimal solution and the attracting region in the parameters space of TSP's energy function is discovered. An many attracting region relating to the global optimal solution for TSP is founded. Then a neural network algorithm with the optimized parameters by using Orthogonal Array Table Method is proposed and used to solve the Travelling Salesman Problem (TSP) for 30, 31 and 300 cities and Map-coloring Problem (MCP). These results are very satisfactory.

  • Application of AlGaAs/GaAs HBT's to Power Devices for Digital Mobile Radio Communications

    Norio GOTO  Nobuyuki HAYAMA  Hideki TAKAHASHI  Kazuhiko HONJO  

     
    PAPER

      Vol:
    E76-C No:9
      Page(s):
    1367-1372

    This paper describes the performance of AlGaAs/GaAs HBT's developed for power applications. Their applicability to power amplifiers used in digital mobile radio communications is examined through measurement and numerical simulation, considering both power capability and linearity. Power HBT's with carbon-doped base layers showed DC current gains over 90. A linear gain of 19.2 dB, a maximum output RF power of 32.5 dBm, and a power added efficiency of 56 percent were obtained at 950 MHz. Numerical simulations showed that the power efficiency of HBT amplifiers could be improved by using harmonic trap circuits. Intermodulation measurements showed that third-order distortions were at most 21 dBc level at the 1-dB gain compression point. RF spectrum simulations using π/4 shift QPSK modulation showed that side-band spectrum generation was less than 45 dBc level at points 50 kHz off of the carrier frequency. These properties indicate that the power handling capabilities and linearity of HBT amplifiers offer promising potentials for digital mobile radio communications.

  • Fundamental Analysis on Quantum Interconnections in a 2DEG System

    Yujiro NARUSE  

     
    PAPER

      Vol:
    E76-C No:9
      Page(s):
    1362-1366

    A quantum interconnection scheme by controlling the Coulomb interaction between ballistic electrons is proposed in which 2DEG (2 dimensional electron gas) plays the role of an interconnection medium. This concept brings up new possibilities for the interconnection approach in various fields such as parallel processing, telecommunications switching, and quantum functional devices. Cross-over interconnection, address collision, and address selection in a quantum information network system were analyzed as the first step. The obtained results have shown that the interconnection probability can be controlled by the velocity and timing of the ballistic electron emission from the emitter electrode. The proposed interconnection scheme is expected to open up a new field of quantum effect integrated circuits in the 21st century.

  • The New Generation of Wireless Communications Based on Fiber-Radio Technologies

    Kozo MORITA  Hiroyuki OHTSUKA  

     
    INVITED PAPER

      Vol:
    E76-B No:9
      Page(s):
    1061-1068

    This paper describes an overview of wireless communications based on fiber-radio technologies from the viewpoint of system applications, particularly in the area of microcell radio systems. Feasible fiber-radio networks design are detailed in order to increase system performance and cost effectiveness. The benefits of the evolving fiber-radio microcell system are discussed with a spectral delivery scheme to meet traffic demands. Foreseeable electronic and optic technologies are reviewed in light of the key parameters to optimize the overall system. This strategy will play a role in broadband and flexible networks.

  • Performance Analysis of Fiber-Optic Millimeter-Wave Band Radio Subscriber Loop

    Hiroshi HARADA  Hee-Jin LEE  Shozo KOMAKI  Norihiko MORINAGA  

     
    PAPER-System and Network Matters

      Vol:
    E76-B No:9
      Page(s):
    1128-1135

    This paper proposes a new subscriber distribution method called FTTA (Fiber To The Area), which uses millimeter-wave radio band to connect subscribers with base station and optical fiber to connect base station with control station in order to obtain broad-band transmission. Usually two main causes of signal degradation, i.e., rainfall attenuation on radio channel and intermodulation distortion on optical channel are considered in this system. Taking into considerations of these two factors, we analyze the available capacity of FTTA system for various 22nQAM modulation levels. The analysis clarifies that there exists an optimum modulation level that can maxize the available capacity, and AGC circuit in the base station is useful to compensate the rainfall attenuation. It is shown that 18.0Gbps is available under the optimum modulation method of the 64QAM with AGC and 12.0Gbps under the 16QAM without AGC when 20 carriers are used.

  • A Novel Optical Receiver for AM/QAM/FM Hybrid SCM Video Distribution Systems

    Satoyuki MATSUI  Ko-ichi SUTO  Koji KIKUSHIMA  Etsugo YONEDA  

     
    PAPER-Equipment and Device Matters

      Vol:
    E76-B No:9
      Page(s):
    1159-1168

    An optical receiver for hybrid SCM video distribution systems that distribute AM, QAM (quadrature amplitude modulation) and FM TV signals simultaneously is investigated. We propose a novel receiver configuration called the Frequency Division type Receiver (FDR) with consists of a photo detector, filter, and multiple preamplifiers. The receiver is compared with existing receivers in terms of optical sensitivity, distortion characteristics, and configuration simplicity. We clarify that the newly developed FDR type receiver is most suitable for hybrid SCM video distribution systems.

  • Atmospheric Optical Communication System Using Subcarrier PSK Modulation

    Wei HUANG  Jiro TAKAYANAGI  Tetsuo SAKANAKA  Masao NAKAGAWA  

     
    PAPER-Propagation Matters

      Vol:
    E76-B No:9
      Page(s):
    1169-1177

    Atmospheric optical communication (AOC) system using subcarrier PSK modulation is proposed and its superiority to OOK modulation in the presence of scintillation is discussed theoretically. An experimental AOC setup with a subcarrier modulated by 155.52(Mb/s) DPSK at light wave-length λ=0.83(µm) over an 1.8(km) outdoor path is employed to show the performance. Theoretical and experimental results are compared under scintillation in clear weather and a good agreement is observed. Finally, AOC systems using subcarrier M-ary PSK and multiple subcarriers are proposed and discussed.

  • Performance of FM Double Modulation for Subcarrier Optical Transmission

    Ryutaro OHMOTO  Hiroyuki OHTSUKA  

     
    PAPER-Equipment and Device Matters

      Vol:
    E76-B No:9
      Page(s):
    1152-1158

    This paper presents a potential FM double modulation technique for subcarrier optical transmission in order to improve the input dynamic range. The proposed theory of FM double modulation is presented. The BER performance and input dynamic range are shown theoretically and experimentally compared with conventional direct intensity modulation. It was found that the dynamic range could be experimentally improved by 20dB compared with the conventional method by using FM double modulation. The proposed technique achieved an input dynamic range of 60 dB even when using a commercial Fabri-Perot LD.

  • A Centralized Control Microcell Radio System with Spectrum Delivery Switches

    Hirofumi ICHIKAWA  Mamoru OGASAWARA  

     
    PAPER-System and Network Matters

      Vol:
    E76-B No:9
      Page(s):
    1115-1121

    This paper presents a delivery mechanism using a spectrum delivery switch (SDS) in a microcell system. In our fiber-optic microcell systems, modulators, demodulators and spectrum delivery switches are installed in a central station. A spectrum delivery switch controls provide flexible dynamic channel assignment and functions as a hand over algorithm. This control method employs a TDMA time slot switch and a MODEM connection switch. The relation between blocking probability and offered traffic are described and computer simulation results are shown. The results indicate an improvement in this blocking probability over conventional systems.

38721-38740hit(42756hit)