The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] (42807hit)

3961-3980hit(42807hit)

  • Model Checking in the Presence of Schedulers Using a Domain-Specific Language for Scheduling Policies

    Nhat-Hoa TRAN  Yuki CHIBA  Toshiaki AOKI  

     
    PAPER-Software System

      Pubricized:
    2019/03/29
      Vol:
    E102-D No:7
      Page(s):
    1280-1295

    A concurrent system consists of multiple processes that are run simultaneously. The execution orders of these processes are defined by a scheduler. In model checking techniques, the scheduling policy is closely related to the search algorithm that explores all of the system states. To ensure the correctness of the system, the scheduling policy needs to be taken into account during the verification. Current approaches, which use fixed strategies, are only capable of limited kinds of policies and are difficult to extend to handle the variations of the schedulers. To address these problems, we propose a method using a domain-specific language (DSL) for the succinct specification of different scheduling policies. Necessary artifacts are automatically generated from the specification to analyze the behaviors of the system. We also propose a search algorithm for exploring the state space. Based on this method, we develop a tool to verify the system with the scheduler. Our experiments show that we could serve the variations of the schedulers easily and verify the systems accurately.

  • Dynamic Performance Adjustment of CPU and GPU in a Gaming Notebook at the Battery Mode

    Chun-Hung CHENG  Ying-Wen BAI  

     
    PAPER-Computer System

      Pubricized:
    2019/03/27
      Vol:
    E102-D No:7
      Page(s):
    1257-1270

    This new design uses a low power embedded controller (EC) in cooperation with the BIOS of a notebook (NB) computer, both to accomplish dynamic adjustment and to maintain a required performance level of the battery mode of the notebook. In order to extend the operation time at the battery mode, in general, the notebook computer will directly reduce the clock rate and then reduce the performance. This design can obtain the necessary balance of the performance and the power consumption by using both the EC and the BIOS cooperatively to implement the dynamic control of both the CPU and the GPU frequency to maintain the system performance at a sufficient level for a high speed and high resolution video game. In contrast, in order to maintain a certain notebook performance, in terms of battery life it will be necessary to make some trade-offs.

  • A Study of Online State-of-Health Estimation Method for In-Use Electric Vehicles Based on Charge Data

    Di ZHOU  Ping FU  Hongtao YIN  Wei XIE  Shou FENG  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2019/03/29
      Vol:
    E102-D No:7
      Page(s):
    1302-1309

    The real-time state-of-health (SOH) estimation of lithium-ion batteries for electric vehicles (EV) is essential to EV maintenance. According to situations in practical applications such as long EV battery capacity test time, unavailability of regular daily tests, and availability of full-life-cycle charge data of EV recorded on the charging facility big data platform, this paper studies an online in-use EV state-of-health estimation method using iterated extended Gaussian process regression-Kalman filter (GPR-EKF) to incorporate lithium-ion battery data at the macro time scale and the micro time scale based on daily charge data of electric vehicles. This method proposes a kernel function GPR (Gaussian process regression) integrating neutral network with cycles to conduct fitting for data at the macro time scale to determine colored measurement noise; in addition, fragment charge data at the micro time scale is adjusted with real-time iteration to be used as the state equation, which effectively addresses issues of real-time SOC calibration and nonlinearization. The pertinence, effectiveness and real-time performance of the model algorithm in online battery state-of-health estimation is verified by actual data.

  • Weber Centralized Binary Fusion Descriptor for Fingerprint Liveness Detection

    Asera WAYNE ASERA  Masayoshi ARITSUGI  

     
    LETTER-Pattern Recognition

      Pubricized:
    2019/04/17
      Vol:
    E102-D No:7
      Page(s):
    1422-1425

    In this research, we propose a novel method to determine fingerprint liveness to improve the discriminative behavior and classification accuracy of the combined features. This approach detects if a fingerprint is from a live or fake source. In this approach, fingerprint images are analyzed in the differential excitation (DE) component and the centralized binary pattern (CBP) component, which yield the DE image and CBP image, respectively. The images obtained are used to generate a two-dimensional histogram that is subsequently used as a feature vector. To decide if a fingerprint image is from a live or fake source, the feature vector is processed using support vector machine (SVM) classifiers. To evaluate the performance of the proposed method and compare it to existing approaches, we conducted experiments using the datasets from the 2011 and 2015 Liveness Detection Competition (LivDet), collected from four sensors. The results show that the proposed method gave comparable or even better results and further prove that methods derived from combination of features provide a better performance than existing methods.

  • Fast Computation with Efficient Object Data Distribution for Large-Scale Hologram Generation on a Multi-GPU Cluster Open Access

    Takanobu BABA  Shinpei WATANABE  Boaz JESSIE JACKIN  Kanemitsu OOTSU  Takeshi OHKAWA  Takashi YOKOTA  Yoshio HAYASAKI  Toyohiko YATAGAI  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2019/03/29
      Vol:
    E102-D No:7
      Page(s):
    1310-1320

    The 3D holographic display has long been expected as a future human interface as it does not require users to wear special devices. However, its heavy computation requirement prevents the realization of such displays. A recent study says that objects and holograms with several giga-pixels should be processed in real time for the realization of high resolution and wide view angle. To this problem, first, we have adapted a conventional FFT algorithm to a GPU cluster environment in order to avoid heavy inter-node communications. Then, we have applied several single-node and multi-node optimization and parallelization techniques. The single-node optimizations include a change of the way of object decomposition, reduction of data transfer between the CPU and GPU, kernel integration, stream processing, and utilization of multiple GPUs within a node. The multi-node optimizations include distribution methods of object data from host node to the other nodes. Experimental results show that intra-node optimizations attain 11.52 times speed-up from the original single node code. Further, multi-node optimizations using 8 nodes, 2 GPUs per node, attain an execution time of 4.28 sec for generating a 1.6 giga-pixel hologram from a 3.2 giga-pixel object. It means a 237.92 times speed-up of the sequential processing by CPU and 41.78 times speed-up of multi-threaded execution on multicore-CPU, using a conventional FFT-based algorithm.

  • A Fast Non-Overlapping Multi-Camera People Re-Identification Algorithm and Tracking Based on Visual Channel Model

    Chi-Chia SUN  Ming-Hwa SHEU  Jui-Yang CHI  Yan-Kai HUANG  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2019/04/18
      Vol:
    E102-D No:7
      Page(s):
    1342-1348

    In this paper, a nonoverlapping multi-camera and people re-identification algorithm is proposed. It applies inflated major color features for re-identification to reduce computation time. The inflated major color features can dramatically improve efficiency while retaining high accuracy of object re-identification. The proposed method is evaluated over a wide range of experimental databases. The accuracy attains upwards of 40.7% in Rank 1 and 84% in Rank 10 on average, while it obtains three to 15 times faster than algorithms reported in the literature. The proposed algorithm has been implemented on a SOC-FPGA platform to reach 50 FPS with 1280×720 HD resolution and 25 FPS with 1920×1080 FHD resolution for real-time processing. The results show a performance improvement and reduction in computation complexity, which is especially ideal for embedded platform.

  • Rule-Based Automatic Question Generation Using Semantic Role Labeling Open Access

    Onur KEKLIK  Tugkan TUGLULAR  Selma TEKIR  

     
    PAPER-Natural Language Processing

      Pubricized:
    2019/04/01
      Vol:
    E102-D No:7
      Page(s):
    1362-1373

    This paper proposes a new rule-based approach to automatic question generation. The proposed approach focuses on analysis of both syntactic and semantic structure of a sentence. Although the primary objective of the designed system is question generation from sentences, automatic evaluation results shows that, it also achieves great performance on reading comprehension datasets, which focus on question generation from paragraphs. Especially, with respect to METEOR metric, the designed system significantly outperforms all other systems in automatic evaluation. As for human evaluation, the designed system exhibits similar performance by generating the most natural (human-like) questions.

  • Temporal Outlier Detection and Correlation Analysis of Business Process Executions

    Chun Gun PARK  Hyun AHN  

     
    LETTER-Office Information Systems, e-Business Modeling

      Pubricized:
    2019/04/09
      Vol:
    E102-D No:7
      Page(s):
    1412-1416

    Temporal behavior is a primary aspect of business process executions. Herein, we propose a temporal outlier detection and analysis method for business processes. Particularly, the method performs correlation analysis between the execution times of traces and activities to determine the type of activities that significantly influences the anomalous temporal behavior of a trace. To this end, we describe the modeling of temporal behaviors considering different control-flow patterns of business processes. Further, an execution time matrix with execution times of activities in all traces is constructed by using the event logs. Based on this matrix, we perform temporal outlier detection and correlation-based analysis.

  • Attention-Based Dense LSTM for Speech Emotion Recognition Open Access

    Yue XIE  Ruiyu LIANG  Zhenlin LIANG  Li ZHAO  

     
    LETTER-Pattern Recognition

      Pubricized:
    2019/04/17
      Vol:
    E102-D No:7
      Page(s):
    1426-1429

    Despite the widespread use of deep learning for speech emotion recognition, they are severely restricted due to the information loss in the high layer of deep neural networks, as well as the degradation problem. In order to efficiently utilize information and solve degradation, attention-based dense long short-term memory (LSTM) is proposed for speech emotion recognition. LSTM networks with the ability to process time series such as speech are constructed into which attention-based dense connections are introduced. That means the weight coefficients are added to skip-connections of each layer to distinguish the difference of the emotional information between layers and avoid the interference of redundant information from the bottom layer to the effective information from the top layer. The experiments demonstrate that proposed method improves the recognition performance by 12% and 7% on eNTERFACE and IEMOCAP corpus respectively.

  • Experimental Validation of Conifer and Broad-Leaf Tree Classification Using High Resolution PolSAR Data above X-Band

    Yoshio YAMAGUCHI  Yuto MINETANI  Maito UMEMURA  Hiroyoshi YAMADA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2019/01/09
      Vol:
    E102-B No:7
      Page(s):
    1345-1350

    This paper presents a conifer and broad-leaf tree classification scheme that processes high resolution polarimetric synthetic aperture data above X-band. To validate the proposal, fully polarimetric measurements are conducted in a precisely controlled environment to examine the difference between the scattering mechanisms of conifer and broad-leaf trees at 15GHz. With 3.75cm range resolution, scattering matrices of two tree types were measured by a vector network analyzer. Polarimetric analyses using the 4-component scattering power decomposition and alpha-bar angle of eigenvalue decomposition yielded clear distinction between the two tree types. This scheme was also applied to an X-band Pi-SAR2 data set. The results confirm that it is possible to distinguish between tree types using fully polarimetric and high-resolution data above X-band.

  • Several Bits Are Enough: Off-Grid Target Localization in WSNs Using Variational Bayesian EM Algorithm

    Yan GUO  Peng QIAN  Ning LI  

     
    LETTER-Digital Signal Processing

      Vol:
    E102-A No:7
      Page(s):
    926-929

    The compressive sensing has been applied to develop an effective framework for simultaneously localizing multiple targets in wireless sensor networks. Nevertheless, existing methods implicitly use analog measurements, which have infinite bit precision. In this letter, we focus on off-grid target localization using quantized measurements with only several bits. To address this, we propose a novel localization framework for jointly estimating target locations and dealing with quantization errors, based on the novel application of the variational Bayesian Expectation-Maximization methodology. Simulation results highlight its superior performance.

  • Recognition of Moving Object in High Dynamic Scene for Visual Prosthesis

    Fei GUO  Yuan YANG  Yang XIAO  Yong GAO  Ningmei YU  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2019/04/17
      Vol:
    E102-D No:7
      Page(s):
    1321-1331

    Currently, visual perceptions generated by visual prosthesis are low resolution with unruly color and restricted grayscale. This severely restricts the ability of prosthetic implant to complete visual tasks in daily scenes. Some studies explore existing image processing techniques to improve the percepts of objects in prosthetic vision. However, most of them extract the moving objects and optimize the visual percepts in general dynamic scenes. The application of visual prosthesis in daily life scenes with high dynamic is greatly limited. Hence, in this study, a novel unsupervised moving object segmentation model is proposed to automatically extract the moving objects in high dynamic scene. In this model, foreground cues with spatiotemporal edge features and background cues with boundary-prior are exploited, the moving object proximity map are generated in dynamic scene according to the manifold ranking function. Moreover, the foreground and background cues are ranked simultaneously, and the moving objects are extracted by the two ranking maps integration. The evaluation experiment indicates that the proposed method can uniformly highlight the moving object and keep good boundaries in high dynamic scene with other methods. Based on this model, two optimization strategies are proposed to improve the perception of moving objects under simulated prosthetic vision. Experimental results demonstrate that the introduction of optimization strategies based on the moving object segmentation model can efficiently segment and enhance moving objects in high dynamic scene, and significantly improve the recognition performance of moving objects for the blind.

  • Programmable Analog Calculation Unit with Two-Stage Architecture: A Solution of Efficient Vector-Computation Open Access

    Renyuan ZHANG  Takashi NAKADA  Yasuhiko NAKASHIMA  

     
    PAPER

      Vol:
    E102-A No:7
      Page(s):
    878-885

    A programmable analog calculation unit (ACU) is designed for vector computations in continuous-time with compact circuit scale. From our early study, it is feasible to retrieve arbitrary two-variable functions through support vector regression (SVR) in silicon. In this work, the dimensions of regression are expanded for vector computations. However, the hardware cost and computing error greatly increase along with the expansion of dimensions. A two-stage architecture is proposed to organize multiple ACUs for high dimensional regression. The computation of high dimensional vectors is separated into several computations of lower dimensional vectors, which are implemented by the free combination of several ACUs with lower cost. In this manner, the circuit scale and regression error are reduced. The proof-of-concept ACU is designed and simulated in a 0.18μm technology. From the circuit simulation results, all the demonstrated calculations with nine operands are executed without iterative clock cycles by 4960 transistors. The calculation error of example functions is below 8.7%.

  • PMOP: Efficient Per-Page Most-Offset Prefetcher

    Kanghee KIM  Wooseok LEE  Sangbang CHOI  

     
    PAPER-Computer System

      Pubricized:
    2019/04/12
      Vol:
    E102-D No:7
      Page(s):
    1271-1279

    Hardware prefetching involves a sophisticated balance between accuracy, coverage, and timeliness while minimizing hardware cost. Recent prefetchers have achieved these goals, but they still require complex hardware and a significant amount of storage. In this paper, we propose an efficient Per-page Most-Offset Prefetcher (PMOP) that minimizes hardware cost and simultaneously improves accuracy while maintaining coverage and timeliness. We achieve these objectives using an enhanced offset prefetcher that performs well with a reasonable hardware cost. Our approach first addresses coverage and timeliness by allowing multiple Most-Offset predictions. To minimize offset interference between pages, the PMOP leverages a fine-grain per-page offset filter. This filter records the access history with page-IDs, which enables efficient mapping and tracking of multiple offset streams from diverse pages. Analysis results show that PMOP outperforms the state-of-the-art Signature Path Prefetcher while reducing storage overhead by a factor of 3.4.

  • Methods for Adaptive Video Streaming and Picture Quality Assessment to Improve QoS/QoE Performances Open Access

    Kenji KANAI  Bo WEI  Zhengxue CHENG  Masaru TAKEUCHI  Jiro KATTO  

     
    INVITED PAPER

      Pubricized:
    2019/01/22
      Vol:
    E102-B No:7
      Page(s):
    1240-1247

    This paper introduces recent trends in video streaming and four methods proposed by the authors for video streaming. Video traffic dominates the Internet as seen in current trends, and new visual contents such as UHD and 360-degree movies are being delivered. MPEG-DASH has become popular for adaptive video streaming, and machine learning techniques are being introduced in several parts of video streaming. Along with these research trends, the authors also tried four methods: route navigation, throughput prediction, image quality assessment, and perceptual video streaming. These methods contribute to improving QoS/QoE performance and reducing power consumption and storage size.

  • EXIT Chart-Aided Design of LDPC Codes for Self-Coherent Detection with Turbo Equalizer for Optical Fiber Short-Reach Transmissions Open Access

    Noboru OSAWA  Shinsuke IBI  Koji IGARASHI  Seiichi SAMPEI  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2019/01/16
      Vol:
    E102-B No:7
      Page(s):
    1301-1312

    This paper proposed an iterative soft interference canceller (IC) referred to as turbo equalizer for the self-coherent detection, and extrinsic information transfer (EXIT) chart based irregular low density parity check (LDPC) code optimization for the turbo equalizer in optical fiber short-reach transmissions. The self-coherent detection system is capable of linear demodulation by a single photodiode receiver. However, the self-coherent detection suffers from the interference induced by signal-signal beat components, and the suppression of the interference is a vital goal of self-coherent detection. For improving the error-free signal detection performance of the self-coherent detection, we proposed an iterative soft IC with the aid of forward error correction (FEC) decoder. Furthermore, typical FEC code is no longer appropriate for the iterative detection of the turbo equalizer. Therefore, we designed an appropriate LDPC code by using EXIT chart aided code design. The validity of the proposed turbo equalizer with the appropriate LDPC is confirmed by computer simulations.

  • Type-I Digital Ring-Based PLL Using Loop Delay Compensation and ADC-Based Sampling Phase Detector

    Zule XU  Anugerah FIRDAUZI  Masaya MIYAHARA  Kenichi OKADA  Akira MATSUZAWA  

     
    PAPER

      Vol:
    E102-C No:7
      Page(s):
    520-529

    This paper presents a type-I digital ring-based PLL with wide loop bandwidth to lower the ring oscillator's noise contribution. The loop delay due to the D flip-flops at filter's output is compensated in order to lower the noise peak and stably achieve wide loop bandwidth. The input-referred jitter is lowered by using a successive-approximated-register analog-to-digital converter (SAR-ADC)-based sampling phase detector (SPD). A stacked reference buffer is introduced to reduce the transient short-circuit current for low power and low reference spur. The locking issue due to the steady-state phase error in a type-I PLL and the limited range of the phase detector is addressed using a TDC-assisted loop. The loop stability and phase noise are analyzed, suggesting a trade-off for the minimum jitter. The solutions in detail are described. The prototype PLL fabricated in 65 nm CMOS demonstrates 2.0 ps RMS jitter, 3.1 mW power consumption, and 0.067 mm2 area, with 50 MHz reference frequency and 2.0 GHz output frequency.

  • Advances in Voltage-Controlled-Oscillator-Based ΔΣ ADCs Open Access

    Shaolan LI  Arindam SANYAL  Kyoungtae LEE  Yeonam YOON  Xiyuan TANG  Yi ZHONG  Kareem RAGAB  Nan SUN  

     
    INVITED PAPER

      Vol:
    E102-C No:7
      Page(s):
    509-519

    Ring voltage-controlled-oscillators (VCOs) are increasingly being used to design ΔΣ ADCs. They have the merits of simple, highly digital and low-voltage tolerant, making them attractive alternatives for the classic scaling-unfriendly operational-amplifier-based methodology. This paper aims to provide a summary on the advancement of VCO-based ΔΣ ADCs. The scope of this paper includes the basics and motivations behind the VCO-based ADCs, followed by a survey covering a wide range of architectures and circuit techniques in both continuous-time (CT) and discrete-time (DT) implementation, and will discuss the key insights behind the contributions and drawbacks of these architectures.

  • Clustering Malicious DNS Queries for Blacklist-Based Detection

    Akihiro SATOH  Yutaka NAKAMURA  Daiki NOBAYASHI  Kazuto SASAI  Gen KITAGATA  Takeshi IKENAGA  

     
    LETTER-Information Network

      Pubricized:
    2019/04/05
      Vol:
    E102-D No:7
      Page(s):
    1404-1407

    Some of the most serious threats to network security involve malware. One common way to detect malware-infected machines in a network is by monitoring communications based on blacklists. However, such detection is problematic because (1) no blacklist is completely reliable, and (2) blacklists do not provide the sufficient evidence to allow administrators to determine the validity and accuracy of the detection results. In this paper, we propose a malicious DNS query clustering approach for blacklist-based detection. Unlike conventional classification, our cause-based classification can efficiently analyze malware communications, allowing infected machines in the network to be addressed swiftly.

  • Quality Index for Benchmarking Image Inpainting Algorithms with Guided Regional Statistics

    Song LIANG  Leida LI  Bo HU  Jianying ZHANG  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2019/04/01
      Vol:
    E102-D No:7
      Page(s):
    1430-1433

    This letter presents an objective quality index for benchmarking image inpainting algorithms. Under the guidance of the masks of damaged areas, the boundary region and the inpainting region are first located. Then, the statistical features are extracted from the boundary and inpainting regions respectively. For the boundary region, we utilize Weibull distribution to fit the gradient magnitude histograms of the exterior and interior regions around the boundary, and the Kullback-Leibler Divergence (KLD) is calculated to measure the boundary distortions caused by imperfect inpainting. Meanwhile, the quality of the inpainting region is measured by comparing the naturalness factors between the inpainted image and the reference image. Experimental results demonstrate that the proposed metric outperforms the relevant state-of-the-art quality metrics.

3961-3980hit(42807hit)