The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] (42807hit)

1921-1940hit(42807hit)

  • Device-Free Localization via Sparse Coding with a Generalized Thresholding Algorithm

    Qin CHENG  Linghua ZHANG  Bo XUE  Feng SHU  Yang YU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/08/05
      Vol:
    E105-B No:1
      Page(s):
    58-66

    As an emerging technology, device-free localization (DFL) using wireless sensor networks to detect targets not carrying any electronic devices, has spawned extensive applications, such as security safeguards and smart homes or hospitals. Previous studies formulate DFL as a classification problem, but there are still some challenges in terms of accuracy and robustness. In this paper, we exploit a generalized thresholding algorithm with parameter p as a penalty function to solve inverse problems with sparsity constraints for DFL. The function applies less bias to the large coefficients and penalizes small coefficients by reducing the value of p. By taking the distinctive capability of the p thresholding function to measure sparsity, the proposed approach can achieve accurate and robust localization performance in challenging environments. Extensive experiments show that the algorithm outperforms current alternatives.

  • Multi-Model Selective Backdoor Attack with Different Trigger Positions

    Hyun KWON  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/10/21
      Vol:
    E105-D No:1
      Page(s):
    170-174

    Deep neural networks show good performance in image recognition, speech recognition, and pattern analysis. However, deep neural networks show weaknesses, one of which is vulnerability to backdoor attacks. A backdoor attack performs additional training of the target model on backdoor samples that contain a specific trigger so that normal data without the trigger will be correctly classified by the model, but the backdoor samples with the specific trigger will be incorrectly classified by the model. Various studies on such backdoor attacks have been conducted. However, the existing backdoor attack causes misclassification by one classifier. In certain situations, it may be necessary to carry out a selective backdoor attack on a specific model in an environment with multiple models. In this paper, we propose a multi-model selective backdoor attack method that misleads each model to misclassify samples into a different class according to the position of the trigger. The experiment for this study used MNIST and Fashion-MNIST as datasets and TensorFlow as the machine learning library. The results show that the proposed scheme has a 100% average attack success rate for each model while maintaining 97.1% and 90.9% accuracy on the original samples for MNIST and Fashion-MNIST, respectively.

  • Monitoring Trails Computation within Allowable Expected Period Specified for Transport Networks

    Nagao OGINO  Takeshi KITAHARA  

     
    PAPER-Network Management/Operation

      Pubricized:
    2021/07/09
      Vol:
    E105-B No:1
      Page(s):
    21-33

    Active network monitoring based on Boolean network tomography is a promising technique to localize link failures instantly in transport networks. However, the required set of monitoring trails must be recomputed after each link failure has occurred to handle succeeding link failures. Existing heuristic methods cannot compute the required monitoring trails in a sufficiently short time when multiple-link failures must be localized in the whole of large-scale managed networks. This paper proposes an approach for computing the required monitoring trails within an allowable expected period specified beforehand. A random walk-based analysis estimates the number of monitoring trails to be computed in the proposed approach. The estimated number of monitoring trails are computed by a lightweight method that only guarantees partial localization within restricted areas. The lightweight method is repeatedly executed until a successful set of monitoring trails achieving unambiguous localization in the entire managed networks can be obtained. This paper demonstrates that the proposed approach can compute a small number of monitoring trails for localizing all independent dual-link failures in managed networks made up of thousands of links within a given expected short period.

  • Pruning Ratio Optimization with Layer-Wise Pruning Method for Accelerating Convolutional Neural Networks

    Koji KAMMA  Sarimu INOUE  Toshikazu WADA  

     
    PAPER-Biocybernetics, Neurocomputing

      Pubricized:
    2021/09/29
      Vol:
    E105-D No:1
      Page(s):
    161-169

    Pruning is an effective technique to reduce computational complexity of Convolutional Neural Networks (CNNs) by removing redundant neurons (or weights). There are two types of pruning methods: holistic pruning and layer-wise pruning. The former selects the least important neuron from the entire model and prunes it. The latter conducts pruning layer by layer. Recently, it has turned out that some layer-wise methods are effective for reducing computational complexity of pruned models while preserving their accuracy. The difficulty of layer-wise pruning is how to adjust pruning ratio (the ratio of neurons to be pruned) in each layer. Because CNNs typically have lots of layers composed of lots of neurons, it is inefficient to tune pruning ratios by human hands. In this paper, we present Pruning Ratio Optimizer (PRO), a method that can be combined with layer-wise pruning methods for optimizing pruning ratios. The idea of PRO is to adjust pruning ratios based on how much pruning in each layer has an impact on the outputs in the final layer. In the experiments, we could verify the effectiveness of PRO.

  • SRAM: A Septum-Type Polarizer Design Method Based on Superposed Even- and Odd-Mode Excitation Analysis

    Tomoki KANEKO  Hirobumi SAITO  Akira HIROSE  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2021/07/08
      Vol:
    E105-C No:1
      Page(s):
    9-17

    This paper proposes an analytical method to design septum-type polarizers by assuming a polarizer as a series of four septum elements with a short ridge-waveguide approximation. We determine parameters of respective elements in such a manner that, at the center frequency, the reflection coefficient of the first element is equal to that of the second one, the reflection of the third one equals to that of the forth, and the electrical lengths of the first, second and third elements are 90 deg. We name this method the Short Ridge-waveguide Approximation Method (SRAM). We fabricated an X-band polarizer, which achieves a cross polarization discrimination (XPD) value of 40.7-64.1 dB over 8.0-8.4 GHz, without any numerical optimization.

  • Classification with CNN features and SVM on Embedded DSP Core for Colorectal Magnified NBI Endoscopic Video Image

    Masayuki ODAGAWA  Takumi OKAMOTO  Tetsushi KOIDE  Toru TAMAKI  Shigeto YOSHIDA  Hiroshi MIENO  Shinji TANAKA  

     
    PAPER-VLSI Design Technology and CAD

      Pubricized:
    2021/07/21
      Vol:
    E105-A No:1
      Page(s):
    25-34

    In this paper, we present a classification method for a Computer-Aided Diagnosis (CAD) system in a colorectal magnified Narrow Band Imaging (NBI) endoscopy. In an endoscopic video image, color shift, blurring or reflection of light occurs in a lesion area, which affects the discrimination result by a computer. Therefore, in order to identify lesions with high robustness and stable classification to these images specific to video frame, we implement a CAD system for colorectal endoscopic images with the Convolutional Neural Network (CNN) feature and Support Vector Machine (SVM) classification on the embedded DSP core. To improve the robustness of CAD system, we construct the SVM learned by multiple image sizes data sets so as to adapt to the noise peculiar to the video image. We confirmed that the proposed method achieves higher robustness, stable, and high classification accuracy in the endoscopic video image. The proposed method also can cope with differences in resolution by old and new endoscopes and perform stably with respect to the input endoscopic video image.

  • Excess Path Loss Prediction of the Air to Ground Channel for Drone Small Cell

    Chi-Min LI  Yi-Ting LIAO  Pao-Jen WANG  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2021/07/13
      Vol:
    E105-B No:1
      Page(s):
    44-50

    In order to satisfy the user's demands for faster data rates and higher channel capacity, fifth generation (5G) wireless networks operate in the frequency at both sub-6GHz and millimeter wave bands for more abundant spectrum resources. Compared with the sub-6G bands, signals transmitted in the millimeter bands suffer from severe channel attenuation. A drone small cell (DSC) has been proposed recently to provide services outdoors. Not only does DSC have high maneuverability, it can also be deployed quickly in the required regions. Therefore, it is an important issue to establish the Air-to-Ground (ATG) channel model by taking into account the effects of building shielding and excess loss in various DSC deployments at different frequency bands. In this paper, we synthesize the ATG channels of the DSC and approximate the excess path loss of the ATG for different urban environments based on the ITU-R standard. With the approximated curve fitting relations, the proper height of the drone base station that satisfies a certain connected probability can be easily obtained for different scenarios.

  • A Construction of Inter-Group Complementary Sequence Set Based on Interleaving Technique

    Xiaoyu CHEN  Huanchang LI  Yihan ZHANG  Yubo LI  

     
    LETTER-Coding Theory

      Pubricized:
    2021/07/12
      Vol:
    E105-A No:1
      Page(s):
    68-71

    A new construction of shift sequences is proposed under the condition of P|L, and then the inter-group complementary (IGC) sequence sets are constructed based on the shift sequence. By adjusting the parameter q, two or three IGC sequence sets can be obtained. Compared with previous methods, the proposed construction can provide more sequence sets for both synchronous and asynchronous code-division multiple access communication systems.

  • Generation of Surface Wave in C-Band Automotive On-Glass Antenna and an Easily Realizable Suppression Method for Improving Antenna Characteristics

    Osamu KAGAYA  Keisuke ARAI  Takato WATANABE  Takuji ARIMA  Toru UNO  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2021/08/02
      Vol:
    E105-B No:1
      Page(s):
    51-57

    In this paper, the influence of surface waves on the characteristics of on-glass antennas is clarified to enable appropriates design of C-band automotive on-glass antennas. Composite glasses are used in automotive windshields. These automotive composite glasses are composed of three layers. First, the surface wave properties of composite glass are investigated. Next, the effects of surface waves on the reflection coefficient characteristics of on-glass antennas are investigated. Finally, the antenna placement to reduce surface wave effect will be presented. Electromagnetic field analysis of a dipole antenna placed at the center of a 300mm × 300mm square flat composite glass showed that the electric field strength in the glass had ripples with the half wavelength period of the surface waves. Therefore, it was confirmed that standing waves are generated because of these surface waves. In addition, it is confirmed that ripples occur in the reflection coefficient at frequencies. Glass size is divisible by each of those guide wavelengths. Furthermore, it was clarified that the reflection coefficient fluctuates with respect to the distance between the antenna and a metal frame, which is attached to the end face in the direction perpendicular to the thickness of the glass because of the influence of standing waves caused by the surface waves; additionally, the reflection coefficient gets worse when the distance between the antenna and the metal frame is an integral multiple of one half wavelength. A similar tendency was observed in an electric field analysis using a model that was shaped like the actual windshield shape. Because radiation patterns also change as a result of the influence of surface waves and metal frames, the results imply that it is necessary to consider the actual device size and the metal frames when designing automotive on-glass antennas.

  • A New Method Based on Copula Theory for Evaluating Detection Performance of Distributed-Processing Multistatic Radar System

    Van Hung PHAM  Tuan Hung NGUYEN  Duc Minh NGUYEN  Hisashi MORISHITA  

     
    PAPER-Sensing

      Pubricized:
    2021/07/13
      Vol:
    E105-B No:1
      Page(s):
    67-75

    In this paper, we propose a new method based on copula theory to evaluate the detection performance of a distributed-processing multistatic radar system (DPMRS). By applying the Gaussian copula to model the dependence of local decisions in a DPMRS as well as data fusion rules of AND, OR, and K/N, the performance of a DPMRS for detecting Swerling fluctuating targets can be easily evaluated even under non-Gaussian clutter with a nonuniform dependence matrix. The reliability and flexibility of this method are validated by applying the proposed method to a previous problem by other authors, and our other investigation results indicate its high potential for evaluating DPMRS performance in various cases involving different models of target and clutter.

  • Study in CSI Correction Localization Algorithm with DenseNet Open Access

    Junna SHANG  Ziyang YAO  

     
    PAPER-Navigation, Guidance and Control Systems

      Pubricized:
    2021/06/23
      Vol:
    E105-B No:1
      Page(s):
    76-84

    With the arrival of 5G and the popularity of smart devices, indoor localization technical feasibility has been verified, and its market demands is huge. The channel state information (CSI) extracted from Wi-Fi is physical layer information which is more fine-grained than the received signal strength indication (RSSI). This paper proposes a CSI correction localization algorithm using DenseNet, which is termed CorFi. This method first uses isolation forest to eliminate abnormal CSI, and then constructs a CSI amplitude fingerprint containing time, frequency and antenna pair information. In an offline stage, the densely connected convolutional networks (DenseNet) are trained to establish correspondence between CSI and spatial position, and generalized extended interpolation is applied to construct the interpolated fingerprint database. In an online stage, DenseNet is used for position estimation, and the interpolated fingerprint database and K-nearest neighbor (KNN) are combined to correct the position of the prediction results with low maximum probability. In an indoor corridor environment, the average localization error is 0.536m.

  • A Novel Low Complexity Scheme for Multiuser Massive MIMO Systems

    Aye Mon HTUN  Maung SANN MAW  Iwao SASASE  P. Takis MATHIOPOULOS  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/07/01
      Vol:
    E105-B No:1
      Page(s):
    85-96

    In this paper, we propose a novel user selection scheme based on jointly combining channel gain (CG) and signal to interference plus noise ratio (SINR) to improve the sum-rate as well as to reduce the computation complexity of multi-user massive multi-input multi-output (MU-massive MIMO) downlink transmission through a block diagonalization (BD) precoding technique. By jointly considering CG and SINR based user sets, sum-rate performance improvement can be achieved by selecting higher gain users with better SINR conditions as well as by eliminating the users who cause low sum-rate in the system. Through this approach, the number of possible outcomes for the user selection scheme can be reduced by counting the common users for every pair of user combinations in the selection process since the common users of CG-based and SINR-based sets possess both higher channel gains and better SINR conditions. The common users set offers not only sum-rate performance improvements but also computation complexity reduction in the proposed scheme. It is shown by means of computer simulation experiments that the proposed scheme can increase the sum-rate with lower computation complexity for various numbers of users as compared to conventional schemes requiring the same or less computational complexity.

  • An Exploration of npm Package Co-Usage Examples from Stack Overflow: A Case Study

    Syful ISLAM  Dong WANG  Raula GAIKOVINA KULA  Takashi ISHIO  Kenichi MATSUMOTO  

     
    PAPER

      Pubricized:
    2021/10/11
      Vol:
    E105-D No:1
      Page(s):
    11-18

    Third-party package usage has become a common practice in contemporary software development. Developers often face different challenges, including choosing the right libraries, installing errors, discrepancies, setting up the environment, and building failures during software development. The risks of maintaining a third-party package are well known, but it is unclear how information from Stack Overflow (SO) can be useful. This paper performed an empirical study to explore npm package co-usage examples from SO. From over 30,000 SO question posts, we extracted 2,100 posts with package usage information and matched them against the 217,934 npm library package. We find that, popular and highly used libraries are not discussed as often in SO. However, we can see that the accepted answers may prove useful, as we believe that the usage examples and executable commands could be reused for tool support.

  • 200W Four-Way Combined Pulsed Amplifier with 40% Power-Added Efficiency in X-Band

    Shubo DUN  Tiedi ZHANG  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2021/08/17
      Vol:
    E105-C No:1
      Page(s):
    18-23

    This paper presents an X-band power-combined pulsed high power amplifier (HPA) based on the low insertion loss waveguide combiner. Relationships between the return loss and isolation of the magic Tee (MT) have been analyzed and the accurate design technique is given. The combination network is validated by the measurement of a single MT and a four-way passive network, and the characterization of the combined HPA module is designed, fabricated and discussed. The HPA delivers 200W output power with an associated power-added efficiency close to 40% within the frequency range of 7.8 GHz to 12.3 GHz. The combination efficiency is higher than 93%.

  • A Self-Powered Flyback Pulse Resonant Circuit for Combined Piezoelectric and Thermoelectric Energy Harvesting

    Huakang XIA  Yidie YE  Xiudeng WANG  Ge SHI  Zhidong CHEN  Libo QIAN  Yinshui XIA  

     
    PAPER-Electronic Circuits

      Pubricized:
    2021/06/23
      Vol:
    E105-C No:1
      Page(s):
    24-34

    A self-powered flyback pulse resonant circuit (FPRC) is proposed to extract energy from piezoelectric (PEG) and thermoelectric generators (TEG) simultaneously. The FPRC is able to cold start with the PEG voltage regardless of the TEG voltage, which means the TEG energy is extracted without additional cost. The measurements show that the FPRC can output 102 µW power under the input PEG and TEG voltages of 2.5 V and 0.5 V, respectively. The extracted power is increased by 57.6% compared to the case without TEGs. Additionally, the power improvement with respect to an ideal full-wave bridge rectifier is 2.71× with an efficiency of 53.9%.

  • Stochastic Modeling and Local CD Uniformity Comparison between Negative Metal-Based, Negative- and Positive-Tone Development EUV Resists

    Itaru KAMOHARA  Ulrich WELLING  Ulrich KLOSTERMANN  Wolfgang DEMMERLE  

     
    PAPER-Semiconductor Materials and Devices

      Pubricized:
    2021/08/06
      Vol:
    E105-C No:1
      Page(s):
    35-46

    This paper presents a simulation study on the printing behavior of three different EUV resist systems. Stochastic models for negative metal-based resist and conventional chemically amplified resist (CAR) were calibrated and then validated. As for negative-tone development (NTD) CAR, we commenced from a positive-tone development (PTD) CAR calibrated (material) and NTD development models, since state-of-the-art measurements are not available. A conceptual study between PTD CAR and NTD CAR shows that the stochastic inhibitor fluctuation differs for PTD CAR: the inhibitor level exhibits small fluctuation (Mack development). For NTD CAR, the inhibitor fluctuation depends on the NTD type, which is defined by categorizing the difference between the NTD and PTD development thresholds. Respective NTD types have different inhibitor concentration level. Moreover, contact hole printing between negative metal-based and NTD CAR was compared to clarify the stochastic process window (PW) for tone reversed mask. For latter comparison, the aerial image (AI) and secondary electron effect are comparable. Finally, the local CD uniformity (LCDU) for the same 20 nm size, 40 nm pitch contact hole was compared among the three different resists. Dose-dependent behavior of LCDU and stochastic PW for NTD were different for the PTD CAR and metal-based resist. For NTD CAR, small inhibitor level and large inhibitor fluctuation around the development threshold were observed, causing LCDU increase, which is specific to the inverse Mack development resist.

  • Replicated Study of Effectiveness Evaluation of Cutting-Edge Software Engineering

    Yukasa MURAKAMI  Masateru TSUNODA  

     
    LETTER

      Pubricized:
    2021/12/02
      Vol:
    E105-D No:1
      Page(s):
    21-25

    Although many software engineering studies have been conducted, it is not clear whether they meet the needs of software development practitioners. Some studies evaluated the effectiveness of software engineering research by practitioners, to clarify the research satisfies the needs of the practitioners. We performed replicated study of them, recruiting practitioners who mainly belong to SMEs (small and medium-sized enterprises) to the survey. We asked 16 practitioners to evaluate cutting-edge software engineering studies presented in ICSE 2016. In the survey, we set the viewpoint of the evaluation as the effectiveness for the respondent's own work. As a result, the ratio of positive answers (i.e., the answers were greater than 2 on a 5-point scale) was 33.3%, and the ratio was lower than past studies. The result was not affected by the number of employees in the respondent's company, but would be affected by the viewpoint of the evaluation.

  • What Factors Affect the Performance of Software after Migration: A Case Study on Sunway TaihuLight Supercomputer

    Jie TAN  Jianmin PANG  Cong LIU  

     
    LETTER

      Pubricized:
    2021/10/21
      Vol:
    E105-D No:1
      Page(s):
    26-30

    Due to the rapid development of different processors, e.g., x86 and Sunway, software porting between different platforms is becoming more frequent. However, the migrated software's execution efficiency on the target platform is different from that of the source platform, and most of the previous studies have investigated the improvement of the efficiency from the hardware perspective. To the best of our knowledge, this is the first paper to exclusively focus on studying what software factors can result in performance change after software migration. To perform our study, we used SonarQube to detect and measure five software factors, namely Duplicated Lines (DL), Code Smells Density (CSD), Big Functions (BF), Cyclomatic Complexity (CC), and Complex Functions (CF), from 13 selected projects of SPEC CPU2006 benchmark suite. Then, we measured the change of software performance by calculating the acceleration ratio of execution time before (x86) and after (Sunway) software migration. Finally, we performed a multiple linear regression model to analyze the relationship between the software performance change and the software factors. The results indicate that the performance change of software migration from the x86 platform to the Sunway platform is mainly affected by three software factors, i.e., Code Smell Density (CSD), Cyclomatic Complexity (CC), and Complex Functions (CF). The findings can benefit both researchers and practitioners.

  • Leveraging Scale-Up Machines for Swift DBMS Replication on IaaS Platforms Using BalenaDB

    Kaiho FUKUCHI  Hiroshi YAMADA  

     
    PAPER-Software System

      Pubricized:
    2021/10/01
      Vol:
    E105-D No:1
      Page(s):
    92-104

    In infrastructure-as-a-service platforms, cloud users can adjust their database (DB) service scale to dynamic workloads by changing the number of virtual machines running a DB management system (DBMS), called DBMS instances. Replicating a DBMS instance is a non-trivial task since DBMS replication is time-consuming due to the trend that cloud vendors offer high-spec DBMS instances. This paper presents BalenaDB, which performs urgent DBMS replication for handling sudden workload increases. Unlike convectional replication schemes that implicitly assume DBMS replicas are generated on remote machines, BalenaDB generates a warmed-up DBMS replica on an instance running on the local machine where the master DBMS instance runs, by leveraging the master DBMS resources. We prototyped BalenaDB on MySQL 5.6.21, Linux 3.17.2, and Xen 4.4.1. The experimental results show that the time for generating the warmed-up DBMS replica instance on BalenaDB is up to 30× shorter than an existing DBMS instance replication scheme, achieving significantly efficient memory utilization.

  • Firewall Traversal Method by Pseudo-TCP Encapsulation

    Keigo TAGA  Junjun ZHENG  Koichi MOURI  Shoichi SAITO  Eiji TAKIMOTO  

     
    PAPER-Information Network

      Pubricized:
    2021/09/29
      Vol:
    E105-D No:1
      Page(s):
    105-115

    A wide range of communication protocols has recently been developed to address service diversification. At the same time, firewalls (FWs) are installed at the boundaries between internal networks, such as those owned by companies and homes, and the Internet. In general, FWs are configured as whitelists and release only the port corresponding to the service to be used and block communication from other ports. In a previous study, we proposed a method for traversing a FW and enabling communication by inserting a pseudo-transmission control protocol (TCP) header imitating HTTPS into a packet, which normally would be blocked by the FW. In that study, we confirmed the efficiency of the proposed method via its implementation and experiments. Even though common encapsulating techniques work on end-nodes, the previous implementation worked on the relay node assuming a router. Further, middleboxes, which overwrite L3 and L4 headers on the Internet, need to be taken into consideration. Accordingly, we re-implemented the proposed method into an end-node and added a feature countering a typical middlebox, i.e., NAPT, into our implementation. In this paper, we describe the functional confirmation and performance evaluations of both versions of the proposed method.

1921-1940hit(42807hit)