The search functionality is under construction.

Keyword Search Result

[Keyword] ACK(2391hit)

1-20hit(2391hit)

  • Two Classes of Optimal Ternary Cyclic Codes with Minimum Distance Four Open Access

    Chao HE  Xiaoqiong RAN  Rong LUO  

     
    LETTER-Information Theory

      Pubricized:
    2023/10/16
      Vol:
    E107-A No:7
      Page(s):
    1049-1052

    Cyclic codes are a subclass of linear codes and have applications in consumer electronics, data storage systems, and communication systems as they have efficient encoding and decoding algorithms. Let C(t,e) denote the cyclic code with two nonzero αt and αe, where α is a generator of 𝔽*3m. In this letter, we investigate the ternary cyclic codes with parameters [3m - 1, 3m - 1 - 2m, 4] based on some results proposed by Ding and Helleseth in 2013. Two new classes of optimal ternary cyclic codes C(t,e) are presented by choosing the proper t and e and determining the solutions of certain equations over 𝔽3m.

  • Efficient Realization of an SC Circuit with Feedback and Its Applications Open Access

    Yuto ARIMURA  Shigeru YAMASHITA  

     
    PAPER-VLSI Design Technology and CAD

      Pubricized:
    2023/10/26
      Vol:
    E107-A No:7
      Page(s):
    958-965

    Stochastic Computing (SC) allows additions and multiplications to be realized with lower power than the conventional binary operations if we admit some errors. However, for many complex functions which cannot be realized by only additions and multiplications, we do not know a generic efficient method to calculate a function by using an SC circuit; it is necessary to realize an SC circuit by using a generic method such as polynomial approximation methods for such a function, which may lose the advantage of SC. Thus, there have been many researches to consider efficient SC realization for specific functions; an efficient SC square root circuit with a feedback circuit was proposed by D. Wu et al. recently. This paper generalizes the SC square root circuit with a feedback circuit; we identify a situation when we can implement a function efficiently by an SC circuit with a feedback circuit. As examples of our generalization, we propose SC circuits to calculate the n-th root calculation and division. We also show our analysis on the accuracy of our SC circuits and the hardware costs; our results show the effectiveness of our method compared to the conventional SC designs; our framework may be able to implement a SC circuit that is better than the existing methods in terms of the hardware cost or the calculation error.

  • Secrecy Outage Probability and Secrecy Diversity Order of Alamouti STBC with Decision Feedback Detection over Time-Selective Fading Channels Open Access

    Gyulim KIM  Hoojin LEE  Xinrong LI  Seong Ho CHAE  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2023/09/19
      Vol:
    E107-A No:6
      Page(s):
    923-927

    This letter studies the secrecy outage probability (SOP) and the secrecy diversity order of Alamouti STBC with decision feedback (DF) detection over the time-selective fading channels. For given temporal correlations, we have derived the exact SOPs and their asymptotic approximations for all possible combinations of detection schemes including joint maximum likehood (JML), zero-forcing (ZF), and DF at Bob and Eve. We reveal that the SOP is mainly influenced by the detection scheme of the legitimate receiver rather than eavesdropper and the achievable secrecy diversity order converges to two and one for JML only at Bob (i.e., JML-JML/ZF/DF) and for the other cases (i.e., ZF-JML/ZF/DF, DF-JML/ZF/DF), respectively. Here, p-q combination pair indicates that Bob and Eve adopt the detection method p ∈ {JML, ZF, DF} and q ∈ {JML, ZF, DF}, respectively.

  • A Feedback Vertex Set-Based Approach to Simplifying Probabilistic Boolean Networks Open Access

    Koichi KOBAYASHI  

     
    PAPER

      Pubricized:
    2023/09/26
      Vol:
    E107-A No:5
      Page(s):
    779-785

    A PBN is well known as a mathematical model of complex network systems such as gene regulatory networks. In Boolean networks, interactions between nodes (e.g., genes) are modeled by Boolean functions. In PBNs, Boolean functions are switched probabilistically. In this paper, for a PBN, a simplified representation that is effective in analysis and control is proposed. First, after a polynomial representation of a PBN is briefly explained, a simplified representation is derived. Here, the steady-state value of the expected value of the state is focused, and is characterized by a minimum feedback vertex set of an interaction graph expressing interactions between nodes. Next, using this representation, input selection and stabilization are discussed. Finally, the proposed method is demonstrated by a biological example.

  • Output Feedback Ultimate Boundedness Control with Decentralized Event-Triggering Open Access

    Koichi KITAMURA  Koichi KOBAYASHI  Yuh YAMASHITA  

     
    PAPER

      Pubricized:
    2023/11/10
      Vol:
    E107-A No:5
      Page(s):
    770-778

    In cyber-physical systems (CPSs) that interact between physical and information components, there are many sensors that are connected through a communication network. In such cases, the reduction of communication costs is important. Event-triggered control that the control input is updated only when the measured value is widely changed is well known as one of the control methods of CPSs. In this paper, we propose a design method of output feedback controllers with decentralized event-triggering mechanisms, where the notion of uniformly ultimate boundedness is utilized as a control specification. Using this notion, we can guarantee that the state stays within a certain set containing the origin after a certain time, which depends on the initial state. As a result, the number of times that the event occurs can be decreased. First, the design problem is formulated. Next, this problem is reduced to a BMI (bilinear matrix inequality) optimization problem, which can be solved by solving multiple LMI (linear matrix inequality) optimization problems. Finally, the effectiveness of the proposed method is presented by a numerical example.

  • An Academic Presentation Support System Utilizing Structural Elements Open Access

    Kazuma TAKAHASHI  Wen GU  Koichi OTA  Shinobu HASEGAWA  

     
    PAPER

      Pubricized:
    2023/12/27
      Vol:
    E107-D No:4
      Page(s):
    486-494

    In academic presentation, the structure design of presentation is critical for making the presentation logical and understandable. However, it is difficult for novice researchers to construct required academic presentation structure due to the flexibility in structure creation. To help novice researchers revise and improve their presentation structure, we propose an academic presentation structure modification support system based on structural elements of the presentation slides. In the proposed system, we build a presentation structural elements model (PSEM) that represents the essential structural elements and their relations to clarify the ideal structure of academic presentation. Based on the PSEM, we also designed two evaluation indices to evaluate the academic presentation structure. To evaluate the proposed system with real-world data, we construct a web application that generates evaluation and feedback to academic presentation slides. The experimental results demonstrate the effectiveness of the proposed system.

  • CRLock: A SAT and FALL Attacks Resistant Logic Locking Method for Controller at Register Transfer Level

    Masayoshi YOSHIMURA  Atsuya TSUJIKAWA  Toshinori HOSOKAWA  

     
    PAPER-VLSI Design Technology and CAD

      Pubricized:
    2023/09/04
      Vol:
    E107-A No:3
      Page(s):
    583-591

    In recent years, to meet strict time-to-market constraints, it has become difficult for only one semiconductor design company to design a VLSI. Thus, design companies purchase IP cores from third-party IP vendors and design only the necessary parts. On the other hand, since IP cores have the disadvantage that copyright infringement can be easily performed, logic locking has to be applied to them. Functional logic locking methods using TTLock are resilient to SAT attacks however vulnerable to FALL attacks. Additionally, it is difficult to design logic locking based on TTLock at the gate level. This paper proposes a logic locking method, CRLock, based on SAT attack and FALL attack resistance at the register transfer level. The CRLock is a logic locking method for controllers at RTL in which the designer selects a protected input pattern and modifies the controller based on the protection input pattern. In experimental results, we applied CRLock to MCNC'91 benchmark circuits and showed that all circuits are resistant to SAT and FALL attacks.

  • Template Attacks on ECDSA Hardware and Theoretical Estimation of the Success Rate

    Kotaro ABE  Makoto IKEDA  

     
    PAPER-VLSI Design Technology and CAD

      Pubricized:
    2023/08/31
      Vol:
    E107-A No:3
      Page(s):
    575-582

    In this work, template attacks that aimed to leak the nonce were performed on 256-bit ECDSA hardware to evaluate the resistance against side-channel attacks. The target hardware was an ASIC and was revealed to be vulnerable to the combination of template attacks and lattice attacks. Furthermore, the attack result indicated it was not enough to fix the MSB of the nonce to 1 which is a common countermeasure. Also, the success rate of template attacks was estimated by simulation. This estimation does not require actual hardware and enables us to test the security of the implementation in the design phase. To clarify the acceptable amount of the nonce leakage, the computational cost of lattice attacks was compared to that of ρ method which is a cryptanalysis method. As a result, the success rate of 2-bit leakage of the nonce must be under 62% in the case of 256-bit ECDSA. In other words, SNR must be under 2-4 in our simulation model.

  • High-Density Knapsack Cryptosystem Using Shifted-Odd and Super-Increasing Sequence

    Minami SATO  Sosuke MINAMOTO  Ryuichi SAKAI  Yasuyuki MURAKAMI  

     
    LETTER-Cryptography and Information Security

      Pubricized:
    2023/08/04
      Vol:
    E107-A No:3
      Page(s):
    519-522

    It is proven that many public-key cryptosystems would be broken by the quantum computer. The knapsack cryptosystem which is based on the subset sum problem has the potential to be a quantum-resistant cryptosystem. Murakami and Kasahara proposed a SOSI trapdoor sequence which is made by combining shifted-odd (SO) and super-increasing (SI) sequence in the modular knapsack cryptosystem. This paper firstly show that the key generation method could not achieve a secure density against the low-density attack. Second, we propose a high-density key generation method and confirmed that the proposed scheme is secure against the low-density attack.

  • Short DL-Based Blacklistable Ring Signatures from DualRing

    Toru NAKANISHI  Atsuki IRIBOSHI  Katsunobu IMAI  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2023/09/06
      Vol:
    E107-A No:3
      Page(s):
    464-475

    As one of privacy-enhancing authentications suitable for decentralized environments, ring signatures have intensively been researched. In ring signatures, each user can choose any ad-hoc set of users (specified by public keys) called a ring, and anonymously sign a message as one of the users. However, in applications of anonymous authentications, users may misbehave the service due to the anonymity, and thus a mechanism to exclude the anonymous misbehaving users is required. However, in the existing ring signature scheme, a trusted entity to open the identity of the user is needed, but it is not suitable for the decentralized environments. On the other hand, as another type of anonymous authentications, a decentralized blacklistable anonymous credential system is proposed, where anonymous misbehaving users can be detected and excluded by a blacklist. However, the DL-based instantiation needs O(N) proof size for the ring size N. In the research line of the DL-based ring signatures, an efficient scheme with O(log N) signature size, called DualRing, is proposed. In this paper, we propose a DL-based blacklistable ring signature scheme extended from DualRing, where in addition to the short O(log N) signature size for N, the blacklisting mechanism is realized to exclude misbehaving users. Since the blacklisting mechanism causes additional costs in our scheme, the signature size is O(log N+l), where l is the blacklist size.

  • Adversarial Examples Created by Fault Injection Attack on Image Sensor Interface

    Tatsuya OYAMA  Kota YOSHIDA  Shunsuke OKURA  Takeshi FUJINO  

     
    PAPER

      Pubricized:
    2023/09/26
      Vol:
    E107-A No:3
      Page(s):
    344-354

    Adversarial examples (AEs), which cause misclassification by adding subtle perturbations to input images, have been proposed as an attack method on image-classification systems using deep neural networks (DNNs). Physical AEs created by attaching stickers to traffic signs have been reported, which are a threat to traffic-sign-recognition DNNs used in advanced driver assistance systems. We previously proposed an attack method for generating a noise area on images by superimposing an electrical signal on the mobile industry processor interface and showed that it can generate a single adversarial mark that triggers a backdoor attack on the input image. Therefore, we propose a misclassification attack method n DNNs by creating AEs that include small perturbations to multiple places on the image by the fault injection. The perturbation position for AEs is pre-calculated in advance against the target traffic-sign image, which will be captured on future driving. With 5.2% to 5.5% of a specific image on the simulation, the perturbation that induces misclassification to the target label was calculated. As the experimental results, we confirmed that the traffic-sign-recognition DNN on a Raspberry Pi was successfully misclassified when the target traffic sign was captured with. In addition, we created robust AEs that cause misclassification of images with varying positions and size by adding a common perturbation. We propose a method to reduce the amount of robust AEs perturbation. Our results demonstrated successful misclassification of the captured image with a high attack success rate even if the position and size of the captured image are slightly changed.

  • Backdoor Attacks on Graph Neural Networks Trained with Data Augmentation

    Shingo YASHIKI  Chako TAKAHASHI  Koutarou SUZUKI  

     
    LETTER

      Pubricized:
    2023/09/05
      Vol:
    E107-A No:3
      Page(s):
    355-358

    This paper investigates the effects of backdoor attacks on graph neural networks (GNNs) trained through simple data augmentation by modifying the edges of the graph in graph classification. The numerical results show that GNNs trained with data augmentation remain vulnerable to backdoor attacks and may even be more vulnerable to such attacks than GNNs without data augmentation.

  • Robust Visual Tracking Using Hierarchical Vision Transformer with Shifted Windows Multi-Head Self-Attention

    Peng GAO  Xin-Yue ZHANG  Xiao-Li YANG  Jian-Cheng NI  Fei WANG  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2023/10/20
      Vol:
    E107-D No:1
      Page(s):
    161-164

    Despite Siamese trackers attracting much attention due to their scalability and efficiency in recent years, researchers have ignored the background appearance, which leads to their inapplicability in recognizing arbitrary target objects with various variations, especially in complex scenarios with background clutter and distractors. In this paper, we present a simple yet effective Siamese tracker, where the shifted windows multi-head self-attention is produced to learn the characteristics of a specific given target object for visual tracking. To validate the effectiveness of our proposed tracker, we use the Swin Transformer as the backbone network and introduced an auxiliary feature enhancement network. Extensive experimental results on two evaluation datasets demonstrate that the proposed tracker outperforms other baselines.

  • Introduction to Compressed Sensing with Python Open Access

    Masaaki NAGAHARA  

     
    INVITED PAPER-Fundamental Theories for Communications

      Pubricized:
    2023/08/15
      Vol:
    E107-B No:1
      Page(s):
    126-138

    Compressed sensing is a rapidly growing research field in signal and image processing, machine learning, statistics, and systems control. In this survey paper, we provide a review of the theoretical foundations of compressed sensing and present state-of-the-art algorithms for solving the corresponding optimization problems. Additionally, we discuss several practical applications of compressed sensing, such as group testing, sparse system identification, and sparse feedback gain design, and demonstrate their effectiveness through Python programs. This survey paper aims to contribute to the advancement of compressed sensing research and its practical applications in various scientific disciplines.

  • A Nationwide 400-Gbps Backbone Network for Research and Education in Japan Open Access

    Takashi KURIMOTO  Koji SASAYAMA  Osamu AKASHI  Kenjiro YAMANAKA  Naoya KITAGAWA  Shigeo URUSHIDANI  

     
    INVITED PAPER

      Pubricized:
    2023/06/01
      Vol:
    E106-B No:12
      Page(s):
    1275-1285

    This paper describes the architectural design, services, and operation and monitoring functions of Science Information NETwork 6 (SINET6), a 400-Gigabit Ethernet-based academic backbone network launched on a nationwide scale in April 2022. In response to the requirements from universities and research institutions, SINET upgraded its world-class network speed, improved its accessibility, enhanced services and security, incorporated 5G mobile functions, and strengthened international connectivity. With fully-meshed connectivity and fast rerouting, it attains nationwide high performance and high reliability. The evaluation results of network performance are also reported.

  • Data Gathering Method with High Accuracy of Environment Recognition Using Mathematical Optimization in Packet-Level Index Modulation

    Ryuji MIYAMOTO  Osamu TAKYU  Hiroshi FUJIWARA  Koichi ADACHI  Mai OHTA  Takeo FUJII  

     
    PAPER

      Pubricized:
    2023/07/27
      Vol:
    E106-B No:12
      Page(s):
    1337-1349

    With the rapid developments in the Internet of Things (IoT), low power wide area networks (LPWAN) framework, which is a low-power, long-distance communication method, is attracting attention. However, in LPWAN, the access time is limited by Duty Cycle (DC) to avoid mutual interference. Packet-level index modulation (PLIM) is a modulation scheme that uses a combination of the transmission time and frequency channel of a packet as an index, enabling throughput expansion even under DC constraints. The indexes used in PLIM are transmitted according to the mapping. However, when many sensors access the same index, packet collisions occur owing to selecting the same index. Therefore, we propose a mapping design for PLIM using mathematical optimization. The mapping was designed and modeled as a quadratic integer programming problem. The results of the computer simulation evaluations were used to realize the design of PLIM, which achieved excellent sensor information aggregation in terms of environmental monitoring accuracy.

  • Stackelberg Game for Wireless-Powered Relays Assisted Batteryless IoT Networks

    Yanming CHEN  Bin LYU  Zhen YANG  Fei LI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/08/10
      Vol:
    E106-B No:12
      Page(s):
    1479-1490

    In this paper, we investigate a wireless-powered relays assisted batteryless IoT network based on the non-linear energy harvesting model, where there exists an energy service provider constituted by the hybrid access point (HAP) and an IoT service provider constituted by multiple clusters. The HAP provides energy signals to the batteryless devices for information backscattering and the wireless-powered relays for energy harvesting. The relays are deployed to assist the batteryless devices with the information transmission to the HAP by using the harvested energy. To model the energy interactions between the energy service provider and IoT service provider, we propose a Stackelberg game based framework. We aim to maximize the respective utility values of the two providers. Since the utility maximization problem of the IoT service provider is non-convex, we employ the fractional programming theory and propose a block coordinate descent (BCD) based algorithm with successive convex approximation (SCA) and semi-definite relaxation (SDR) techniques to solve it. Numerical simulation results confirm that compared to the benchmark schemes, our proposed scheme can achieve larger utility values for both the energy service provider and IoT service provider.

  • Effect of Return Current Cable in Three Different Calibration Environments on Ringing Damped Oscillations of Contact Discharge Current Waveform from ESD Generator

    Yukihiro TOZAWA  Takeshi ISHIDA  Jiaqing WANG  Osamu FUJIWARA  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Pubricized:
    2023/09/06
      Vol:
    E106-B No:12
      Page(s):
    1455-1462

    Measurements of contact discharge current waveforms from an ESD generator with a test voltage of 4kV are conducted with the IEC specified arrangement of a 2m long return current cable in different three calibration environments that all comply with the IEC calibration standard to identify the occurrence source of damped oscillations (ringing), which has remained unclear since contact discharge testing was first adopted in 1989 IEC publication 801-2. Their frequency spectra are analyzed comparing with the spectrum calculated from the ideal contact discharge current waveform without ringing (IEC specified waveform) offered in IEC 61000-4-2 and the spectra derived from a simplified equivalent circuit based on the IEC standard in combination with the measured input impedances of one-ended grounding return current cable with the same arrangement in the same calibration environment as those for the current measurements. The results show that the measured contact discharge waveforms have ringing around the IEC specified waveform after the falling edge of the peak, causing their spectra from 20MHz to 200MHz, but the spectra from 40MHz to 200MHz significantly differ depending on the calibration environments even for the same cable arrangement, which do not almost affect the spectra from 20MHz to 40MHz and over 200MHz. In the calibration environment under the cable arrangement close to the reference ground, the spectral shapes of the measured contact discharge currents and their frequencies of the multiple peaks and dips roughly correspond to the spectral distributions calculated from the simplified equivalent circuit using the measured cable input impedances. These findings reveal that the root cause of ringing is mainly due to the resonances of the return current cable, and calibration environment under the cable arrangement away from the reference ground tends to mitigate the cable resonances.

  • Design of a Dual-Band Load-Modulated Sequential Amplifier with Extended Back-off

    Minghui YOU  Guohua LIU  Zhiqun CHENG  

     
    BRIEF PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2023/06/07
      Vol:
    E106-C No:12
      Page(s):
    808-811

    This letter presents a dual-band load-modulated sequential amplifier (LMSA). The proposed amplifier changed the attenuator terminated at the isolation port of the four-port combiner of the traditional sequential power amplifier (SPA) architecture into a reactance modulation network (RMN) for load modulation. The impedance can be maintained pure resistance by designing RMN, thus realizing high efficiency and a good portion of the output power in the multiple bands. Compared to the dual-band Doherty power amplifier with a complex dual-band load modulation network (LMN), the proposed LMSA has advantages as maintaining high output power back-off (OBO) efficiency, wide bandwidth and simple construction. A 10-watt dual-band LMSA is simulated and measured in 1.7-1.9GHz and 2.4-2.6GHz with saturated efficiencies 61.2-69.9% and 54.4-70.8%, respectively. The corresponding 9dB OBO efficiency is 46.5-57.1% and 46.4-54.4%, respectively.

  • A Lightweight Reinforcement Learning Based Packet Routing Method Using Online Sequential Learning

    Kenji NEMOTO  Hiroki MATSUTANI  

     
    PAPER-Computer System

      Pubricized:
    2023/08/15
      Vol:
    E106-D No:11
      Page(s):
    1796-1807

    Existing simple routing protocols (e.g., OSPF, RIP) have some disadvantages of being inflexible and prone to congestion due to the concentration of packets on particular routers. To address these issues, packet routing methods using machine learning have been proposed recently. Compared to these algorithms, machine learning based methods can choose a routing path intelligently by learning efficient routes. However, machine learning based methods have a disadvantage of training time overhead. We thus focus on a lightweight machine learning algorithm, OS-ELM (Online Sequential Extreme Learning Machine), to reduce the training time. Although previous work on reinforcement learning using OS-ELM exists, it has a problem of low learning accuracy. In this paper, we propose OS-ELM QN (Q-Network) with a prioritized experience replay buffer to improve the learning performance. It is compared to a deep reinforcement learning based packet routing method using a network simulator. Experimental results show that introducing the experience replay buffer improves the learning performance. OS-ELM QN achieves a 2.33 times speedup than a DQN (Deep Q-Network) in terms of learning speed. Regarding the packet transfer latency, OS-ELM QN is comparable or slightly inferior to the DQN while they are better than OSPF in most cases since they can distribute congestions.

1-20hit(2391hit)