The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ATI(18690hit)

2041-2060hit(18690hit)

  • Calibration of a Digital Phased Array by Using NCO Phase Increasing Algorithm

    Lijie YANG  Ruirui DANG  Chunyi SONG  Zhiwei XU  

     
    PAPER-Sensing

      Pubricized:
    2018/10/15
      Vol:
    E102-B No:4
      Page(s):
    948-955

    All digital phased arrays generate multiple beams concurrently through the digital beam forming technique, which features digital processing with multiple identical receiving/transmitting channels in RF or microwave frequencies. However, the performance of this process strongly depends on accurately matching the amplitude and phase of the channels, as mismatching is likely to degrade radar performance. In this paper, we present a method to calibrate receiving array by using NCO phase increasing algorithm, which simplifies array system by removing the external far-field calibration signals often needed in array systems. Both analysis and simulation results suggest that the proposed method attains better calibration performance than existing approaches, even with a low SNR input signal. Experiments also varify that the proposed calibration method is effective and achieves a desired radiation pattern. We can further boost calibration accuracy and reduce calibration time by programming NCO phase width and NCO phase resolution.

  • Expanded Precoding Index Modulation for MIMO System

    Yasunori NIN  Yukitoshi SANADA  Ryota KIMURA  Hiroki MATSUDA  Ryo SAWAI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/10/05
      Vol:
    E102-B No:4
      Page(s):
    921-929

    Index modulation (IM) is receiving attention because of its high energy efficiency. In precoding index modulation (PIM), some of the data bits are used for the modulation of symbols and the rest are used for the selection of precoding coefficients. In conventional PIM, the precoding matrices are orthogonal and unitary. In the proposed PIM, the number of the columns of the precoding matrix is expanded more than that of the rows. Because of the expanded precoding matrices, the number of data bits used for the selection of precoding coefficients is increased. As a result, a code rate can be reduced compared to that of the conventional PIM and the number of candidate constellation points for demodulation can be decreased as compared to that of a multiple-input multiple-output MIMO system under the same throughput. Numerical results obtained through computer simulation show that the proposed PIM with QPSK symbols improves the performance by about 2.5dB at a bit error rate of 10-3 as compared to overloaded MIMO with 16QAM symbols for two transmit antennas and one receive antenna. It also achieves about 3.5dB better performance than the conventional PIM under the same antenna condition. Furthermore, the optimum number of index modulation bits is found by the simulation for the proposed PIM. In addition, the PIM scheme reduces demodulation complexity by a factor of 32 as compared to that of the MIMO under specific modulation parameters.

  • Detecting Communities and Correlated Attribute Clusters on Multi-Attributed Graphs

    Hiroyoshi ITO  Takahiro KOMAMIZU  Toshiyuki AMAGASA  Hiroyuki KITAGAWA  

     
    PAPER

      Pubricized:
    2019/02/04
      Vol:
    E102-D No:4
      Page(s):
    810-820

    Multi-attributed graphs, in which each node is characterized by multiple types of attributes, are ubiquitous in the real world. Detection and characterization of communities of nodes could have a significant impact on various applications. Although previous studies have attempted to tackle this task, it is still challenging due to difficulties in the integration of graph structures with multiple attributes and the presence of noises in the graphs. Therefore, in this study, we have focused on clusters of attribute values and strong correlations between communities and attribute-value clusters. The graph clustering methodology adopted in the proposed study involves Community detection, Attribute-value clustering, and deriving Relationships between communities and attribute-value clusters (CAR for short). Based on these concepts, the proposed multi-attributed graph clustering is modeled as CAR-clustering. To achieve CAR-clustering, a novel algorithm named CARNMF is developed based on non-negative matrix factorization (NMF) that can detect CAR in a cooperative manner. Results obtained from experiments using real-world datasets show that the CARNMF can detect communities and attribute-value clusters more accurately than existing comparable methods. Furthermore, clustering results obtained using the CARNMF indicate that CARNMF can successfully detect informative communities with meaningful semantic descriptions through correlations between communities and attribute-value clusters.

  • Locality Preserved Joint Nonnegative Matrix Factorization for Speech Emotion Recognition

    Seksan MATHULAPRANGSAN  Yuan-Shan LEE  Jia-Ching WANG  

     
    LETTER

      Pubricized:
    2019/01/28
      Vol:
    E102-D No:4
      Page(s):
    821-825

    This study presents a joint dictionary learning approach for speech emotion recognition named locality preserved joint nonnegative matrix factorization (LP-JNMF). The learned representations are shared between the learned dictionaries and annotation matrix. Moreover, a locality penalty term is incorporated into the objective function. Thus, the system's discriminability is further improved.

  • Information Dissemination Using MANET for Disaster Evacuation Support Open Access

    Tomoyuki OHTA  Masahiro NISHI  Toshikazu TERAMI  Yoshiaki KAKUDA  

     
    INVITED PAPER

      Pubricized:
    2018/10/15
      Vol:
    E102-B No:4
      Page(s):
    670-678

    To minimize the damage caused by landslides resulting from torrential rain, residents must quickly evacuate to a place of refuge. To make the decision to evacuate, residents must be able to collect and share disaster information. Firstly, this paper introduces the Grass-roots Information Distribution System and a fixed type monitoring system which our research group has been developing. The fixed type monitoring system is deployed at the location of apparent danger, whereas the Grass-roots Information Distribution System distributes disaster information acquired from the fixed type monitoring system through a mobile ad hoc network (MANET) to residents. The MANET is configured using mobile terminals of residents. Next, in this paper, an information dissemination scheme utilizing a MANET and cellular networks to communicate among mobile terminals is proposed and simulated in the area where our research group has been deploying the distribution system. The MANET topology and information distribution obtained from the simulation results for further field experiments are then discussed.

  • Quantitative Analyses on Effects from Constraints in Air-Writing Open Access

    Songbin XU  Yang XUE  Yuqing CHEN  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2019/01/28
      Vol:
    E102-D No:4
      Page(s):
    867-870

    Very few existing works about inertial sensor based air-writing focused on writing constraints' effects on recognition performance. We proposed a LSTM-based system and made several quantitative analyses under different constraints settings against CHMM, DTW-AP and CNN. The proposed system shows its advantages in accuracy, real-time performance and flexibility.

  • Spectrum-Based Fault Localization Framework to Support Fault Understanding Open Access

    Yong WANG  Zhiqiu HUANG  Yong LI  RongCun WANG  Qiao YU  

     
    LETTER-Software Engineering

      Pubricized:
    2019/01/15
      Vol:
    E102-D No:4
      Page(s):
    863-866

    A spectrum-based fault localization technique (SBFL), which identifies fault location(s) in a buggy program by comparing the execution statistics of the program spectra of passed executions and failed executions, is a popular automatic debugging technique. However, the usefulness of SBFL is mainly affected by the following two factors: accuracy and fault understanding in reality. To solve this issue, we propose a SBFL framework to support fault understanding. In the framework, we firstly localize a suspicious fault module to start debugging and then generate a weighted fault propagation graph (WFPG) for the hypothesis fault module, which weights the suspiciousness for the nodes to further perform block-level fault localization. In order to evaluate the proposed framework, we conduct a controlled experiment to compare two different module-level SBFL approaches and validate the effectiveness of WFPG. According to our preliminary experiments, the results are promising.

  • A Cost-Effective 1T-4MTJ Embedded MRAM Architecture with Voltage Offset Self-Reference Sensing Scheme for IoT Applications

    Masanori HAYASHIKOSHI  Hiroaki TANIZAKI  Yasumitsu MURAI  Takaharu TSUJI  Kiyoshi KAWABATA  Koji NII  Hideyuki NODA  Hiroyuki KONDO  Yoshio MATSUDA  Hideto HIDAKA  

     
    PAPER

      Vol:
    E102-C No:4
      Page(s):
    287-295

    A 1-Transistor 4-Magnetic Tunnel Junction (1T-4MTJ) memory cell has been proposed for field type of Magnetic Random Access Memory (MRAM). Proposed 1T-4MTJ memory cell array is achieved 44% higher density than that of conventional 1T-1MTJ thanks to the common access transistor structure in a 4-bit memory cell. A self-reference sensing scheme which can read out with write-back in four clock cycles has been also proposed. Furthermore, we add to estimate with considering sense amplifier variation and show 1T-4MTJ cell configuration is the best solution in IoT applications. A 1-Mbit MRAM test chip is designed and fabricated successfully using 130-nm CMOS process. By applying 1T-4MTJ high density cell and partially embedded wordline driver peripheral into the cell array, the 1-Mbit macro size is 4.04 mm2 which is 35.7% smaller than the conventional one. Measured data shows that the read access is 55 ns at 1.5 V typical supply voltage and 25C. Combining with conventional high-speed 1T-1MTJ caches and proposed high-density 1T-4MTJ user memories is an effective on-chip hierarchical non-volatile memory solution, being implemented for low-power MCUs and SoCs of IoT applications.

  • Numerical Channel Characterizations for Liver-Implanted Communications Considering Different Human Subjects

    Pongphan LEELATIEN  Koichi ITO  Kazuyuki SAITO  Manmohan SHARMA  Akram ALOMAINY  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2018/10/22
      Vol:
    E102-B No:4
      Page(s):
    876-883

    This paper presents a numerical study of the wireless channel characteristics of liver implants in a frequency range of 4.5-6.5GHz, considering different digital human phantoms by employing two inhomogeneous male and female models. Path loss data for in-body to on-body and in-body to off-body communication scenarios are provided. The influence of respiration-induced organ movement on signal attenuation is demonstrated. A narrower range of attenuation deviation is observed in the female model as compared to the male model. The path loss data in the female body is between 40-80dB which is around 5-10dB lower than the male model. Path loss data for the in-body to off-body scenario in both models suggest that in-body propagation is the main component of total path loss in the channel. The results demonstrate that channel characteristics are subject dependent, and thus indicate the need to take subject dependencies into consideration when investigating in-body communication channels.

  • In Situ Measurement of Radiated Emissions Based on Array Signal Processing and Adaptive Noise Cancellation

    Peng LI  Zhongyuan ZHOU  Mingjie SHENG  Qi ZHOU  Peng HU  

     
    PAPER-Electromagnetic Theory

      Vol:
    E102-C No:4
      Page(s):
    371-379

    This paper presents a method combining array signal processing and adaptive noise cancellation to suppress unwanted ambient interferences in in situ measurement of radiated emissions of equipment. First, the signals received by the antenna array are processed to form a main data channel and an auxiliary data channel. The main channel contains the radiated emissions of the equipment under test and the attenuated ambient interferences. The auxiliary channel only contains the attenuated ambient interferences. Then, the adaptive noise cancellation technique is used to suppress the ambient interferences based on the correlation of the interferences in the main and auxiliary channels. The proposed method overcomes the problem that the ambient interferences in the two channels of the virtual chamber method are not correlated, and realizes the suppression of multi-source ambient noises in the use of fewer array elements. The results of simulation and experiment show that the proposed method can effectively extract radiated emissions of the equipment under test in complex electromagnetic environment. Finally, discussions on the effect of the beam width of the main channel and the generalization of the proposed method to three dimensionally distributed signals are addressed.

  • All-Optical Modulation Format Conversion and Applications in Future Photonic Networks Open Access

    Ken MISHINA  Daisuke HISANO  Akihiro MARUTA  

     
    INVITED PAPER

      Vol:
    E102-C No:4
      Page(s):
    304-315

    A number of all-optical signal processing schemes based on nonlinear optical effects have been proposed and demonstrated for use in future photonic networks. Since various modulation formats have been developed for optical communication systems, all-optical converters between different modulation formats will be a key technology to connect networks transparently and efficiently. This paper reviews our recent works on all-optical modulation format conversion technologies in order to highlight the fundamental principles and applications in variety of all-optical signal processing schemes.

  • Generation of Efficient Obfuscated Code through Just-in-Time Compilation

    Muhammad HATABA  Ahmed EL-MAHDY  Kazunori UEDA  

     
    LETTER-Dependable Computing

      Pubricized:
    2018/11/22
      Vol:
    E102-D No:3
      Page(s):
    645-649

    Nowadays the computing technology is going through a major paradigm shift. Local processing platforms are being replaced by physically out of reach yet more powerful and scalable environments such as the cloud computing platforms. Previously, we introduced the OJIT system as a novel approach for obfuscating remotely executed programs, making them difficult for adversaries to reverse-engineer. The system exploited the JIT compilation technology to randomly and dynamically transform the code, making it constantly changing, thereby complicating the execution state. This work aims to propose the new design iOJIT, as an enhanced approach that patches the old systems shortcomings, and potentially provides more effective obfuscation. Here, we present an analytic study of the obfuscation techniques on the generated code and the cost of applying such transformations in terms of execution time and performance overhead. Based upon this profiling study, we implemented a new algorithm to choose which obfuscation techniques would be better chosen for “efficient” obfuscation according to our metrics, i.e., less prone to security attacks. Another goal was to study the system performance with different applications. Therefore, we applied our system on a cloud platform running different standard benchmarks from SPEC suite.

  • Incorporation of Faulty Prior Knowledge in Multi-Target Device-Free Localization

    Dongping YU  Yan GUO  Ning LI  Qiao SU  

     
    LETTER-Mobile Information Network and Personal Communications

      Vol:
    E102-A No:3
      Page(s):
    608-612

    As an emerging and promising technique, device-free localization (DFL) has drawn considerable attention in recent years. By exploiting the inherent spatial sparsity of target localization, the compressive sensing (CS) theory has been applied in DFL to reduce the number of measurements. In practical scenarios, a prior knowledge about target locations is usually available, which can be obtained by coarse localization or tracking techniques. Among existing CS-based DFL approaches, however, few works consider the utilization of prior knowledge. To make use of the prior knowledge that is partly or erroneous, this paper proposes a novel faulty prior knowledge aided multi-target device-free localization (FPK-DFL) method. It first incorporates the faulty prior knowledge into a three-layer hierarchical prior model. Then, it estimates location vector and learns model parameters under a variational Bayesian inference (VBI) framework. Simulation results show that the proposed method can improve the localization accuracy by taking advantage of the faulty prior knowledge.

  • Security Performance Analysis for Relay Selection in Cooperative Communication System under Nakagami-m Fading Channel

    Guangna ZHANG  Yuanyuan GAO  Huadong LUO  Nan SHA  Shijie WANG  Kui XU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/09/14
      Vol:
    E102-B No:3
      Page(s):
    603-612

    In this paper, we investigate a cooperative communication system comprised of a source, a destination, and multiple decode-and-forward (DF) relays in the presence of a potential malicious eavesdropper is within or without the coverage area of the source. Based on the more general Nakagami-m fading channels, we analyze the security performance of the single-relay selection and multi-relay selection schemes for protecting the source against eavesdropping. In the single-relay selection scheme, only the best relay is chosen to assist in the source transmission. Differing from the single-relay selection, multi-relay selection scheme allows multiple relays to forward the source to the destination. We also consider the classic direct transmission as a benchmark scheme to compare with the two relay selection schemes. We derive the exact closed-form expressions of outage probability (OP) and intercept probability (IP) for the direct transmission, the single-relay selection as well as the multi-relay selection scheme over Nakagami-m fading channel when the eavesdropper is within and without the coverage area of the source. Moreover, the security-reliability tradeoff (SRT) of these three schemes are also analyzed. It is verified that the SRT of the multi-relay selection consistently outperforms the single-relay selection, which of both the single-relay and multi-relay selection schemes outperform the direct transmission when the number of relays is large, no matter the eavesdropper is within or without the coverage of the source. In addition, as the number of DF relays increases, the SRT of relay selection schemes improve notably. However, the SRT of both two relay selection approaches become worse when the eavesdropper is within the coverage area of the source.

  • Adaptive Two-Step Bayesian Generalized Likelihood Ratio Test Algorithm for Low-Altitude Detection

    Hao ZHOU  Guoping HU  Junpeng SHI  Bin XUE  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2018/09/18
      Vol:
    E102-B No:3
      Page(s):
    571-580

    The low-altitude target detection remains a difficult problem in MIMO radar. In this paper, we propose a novel adaptive two-step Bayesian generalized likelihood ratio test (TB-GLRT) detection algorithm for low-altitude target detection. By defining the compound channel scattering coefficient and applying the K distributed clutter model, the signal models for different radars in low-altitude environment are established. Then, aiming at the problem that the integrals are too complex to yield a closed-form Neyman-Pearson detector, we assume prior knowledge of the channel scattering coefficient and clutter to design an adaptive two-step Bayesian GLRT algorithm for low-altitude target detection. Monte Carlo simulation results verify that the proposed detector has better performance than the square law detector, GLRT detector or Bayesian GLRT detector in low-altitude environment. With the TB-GLRT detector, the maximum detection probability can reach 70% when SNR=0dB and ν=1. Simulations also verify that the multipath effect shows positive influence on detection when SNR<5dB, and when SNR>10dB, the multipath effect shows negative influence on detection. When SNR>0dB, the MIMO radar, which keeps a detection probability over 70% with the proposed algorithm, has the best detection performance. Besides, the detection performance gets improved with the decrease of sea clutter fluctuation level.

  • Scalable State Space Search with Structural-Bottleneck Heuristics for Declarative IT System Update Automation Open Access

    Takuya KUWAHARA  Takayuki KURODA  Manabu NAKANOYA  Yutaka YAKUWA  Hideyuki SHIMONISHI  

     
    PAPER

      Pubricized:
    2018/09/20
      Vol:
    E102-B No:3
      Page(s):
    439-451

    As IT systems, including network systems using SDN/NFV technologies, become large-scaled and complicated, the cost of system management also increases rapidly. Network operators have to maintain their workflow in constructing and consistently updating such complex systems, and thus these management tasks in generating system update plan are desired to be automated. Declarative system update with state space search is a promising approach to enable this automation, however, the current methods is not enough scalable to practical systems. In this paper, we propose a novel heuristic approach to greatly reduce computation time to solve system update procedure for practical systems. Our heuristics accounts for structural bottleneck of the system update and advance search to resolve bottlenecks of current system states. This paper includes the following contributions: (1) formal definition of a novel heuristic function specialized to system update for A* search algorithm, (2) proofs that our heuristic function is consistent, i.e., A* algorithm with our heuristics returns a correct optimal solution and can omit repeatedly expansion of nodes in search spaces, and (3) results of performance evaluation of our heuristics. We evaluate the proposed algorithm in two cases; upgrading running hypervisor and rolling update of running VMs. The results show that computation time to solve system update plan for a system with 100 VMs does not exceed several minutes, whereas the conventional algorithm is only applicable for a very small system.

  • Efficient Enumeration of Flat-Foldable Single Vertex Crease Patterns

    Koji OUCHI  Ryuhei UEHARA  

     
    PAPER

      Pubricized:
    2018/10/31
      Vol:
    E102-D No:3
      Page(s):
    416-422

    We investigate enumeration of distinct flat-foldable crease patterns under the following assumptions: positive integer n is given; every pattern is composed of n lines incident to the center of a sheet of paper; every angle between adjacent lines is equal to 2π/n; every line is assigned one of “mountain,” “valley,” and “flat (or consequently unfolded)”; crease patterns are considered to be equivalent if they are equal up to rotation and reflection. In this natural problem, we can use two well-known theorems for flat-foldability: the Kawasaki Theorem and the Maekawa Theorem in computational origami. Unfortunately, however, they are not enough to characterize all flat-foldable crease patterns. Therefore, so far, we have to enumerate and check flat-foldability one by one using computer. In this study, we develop the first algorithm for the above stated problem by combining these results in a nontrivial way and show its analysis of efficiency.

  • Shortcut Creation for MeNW in the Consideration of Topological Structure and Message Exchanged Open Access

    Masahiro JIBIKI  Suyong EUM  

     
    PAPER

      Pubricized:
    2018/09/20
      Vol:
    E102-B No:3
      Page(s):
    464-473

    This article proposes a method to improve the performance of Message Exchange Network (MeNW) which is modern data distribution network incorporating the search and obtain mechanism. We explore an idea of shortcut creation which can be widely adapted to a topological structure of various network applications. We first define a metric called Efficiency Coefficient (EC) that quantifies the performance enhancement by a shortcut creation. In the design of EC, we consider not only diameter of the topology but also the amount of messages exchanged in the network. Then, we theoretically analyze the creation of a single optimal shortcut in the system based on the performance metric. The simulation results show that the shortcut by the proposed method reduces the network resource to further 30% compared with conventional approaches.

  • Congestion Avoidance Using Multiple Virtual Networks

    Tsuyoshi OGURA  Tatsuya FUJII  

     
    PAPER-Network

      Pubricized:
    2018/08/31
      Vol:
    E102-B No:3
      Page(s):
    557-570

    If a shared IP network is to deliver large-volume streaming media content, such as real-time videos, we need a technique for explicitly setting and dynamically changing the transmission paths used to respond to the congestion situation of the network, including multi-path transmission of a single-flow, to maximize network bandwidth utilization and stabilize transmission quality. However, current technologies cannot realize flexible multi-path transmission because they require complicated algorithms for route searching and the control load for route changing is excessive. This paper proposes a scheme that realizes routing control for multi-path transmission by combining multiple virtual networks on the same physical network. The proposed scheme lowers the control load incurred in creating a detour route because routing control is performed by combining existing routing planes. In addition, our scheme simplifies route searching procedure because congestion avoidance control of multi-path transmission can be realized by the control of a single path. An experiment on the JGN-X network virtualization platform finds that while the time taken to build an inter-slice link must be improved, the time required to inspect whether each slice has virtual nodes that can be connected to the original slice and be used as a detour destination can be as short as 40 microseconds per slice even with large slices having more than 100 virtual nodes.

  • Recognition of Collocation Frames from Sentences

    Xiaoxia LIU  Degen HUANG  Zhangzhi YIN  Fuji REN  

     
    PAPER-Natural Language Processing

      Pubricized:
    2018/12/14
      Vol:
    E102-D No:3
      Page(s):
    620-627

    Collocation is a ubiquitous phenomenon in languages and accurate collocation recognition and extraction is of great significance to many natural language processing tasks. Collocations can be differentiated from simple bigram collocations to collocation frames (referring to distant multi-gram collocations). So far little focus is put on collocation frames. Oriented to translation and parsing, this study aims to recognize and extract the longest possible collocation frames from given sentences. We first extract bigram collocations with distributional semantics based method by introducing collocation patterns and integrating some state-of-the-art association measures. Based on bigram collocations extracted by the proposed method, we get the longest collocation frames according to recursive nature and linguistic rules of collocations. Compared with the baseline systems, the proposed method performs significantly better in bigram collocation extraction both in precision and recall. And in extracting collocation frames, the proposed method performs even better with the precision similar to its bigram collocation extraction results.

2041-2060hit(18690hit)