The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ATI(18690hit)

1841-1860hit(18690hit)

  • Emergence of an Onion-Like Network in Surface Growth and Its Strong Robustness

    Yukio HAYASHI  Yuki TANAKA  

     
    LETTER-Graphs and Networks

      Vol:
    E102-A No:10
      Page(s):
    1393-1396

    We numerically investigate that optimal robust onion-like networks can emerge even with the constraint of surface growth in supposing a spatially embedded transportation or communication system. To be onion-like, moderately long links are necessary in the attachment through intermediations inspired from a social organization theory.

  • Polarization Filtering Based Transmission Scheme for Wireless Communications

    Zhangkai LUO  Zhongmin PEI  Bo ZOU  

     
    LETTER-Digital Signal Processing

      Vol:
    E102-A No:10
      Page(s):
    1387-1392

    In this letter, a polarization filtering based transmission (PFBT) scheme is proposed to enhance the spectrum efficiency in wireless communications. In such scheme, the information is divided into several parts and each is conveyed by a polarized signal with a unique polarization state (PS). Then, the polarized signals are added up and transmitted by the dual-polarized antenna. At the receiver side, the oblique projection polarization filters (OPPFs) are adopted to separate each polarized signal. Thus, they can be demodulated separately. We mainly focus on the construction methods of the OPPF matrix when the number of the separate parts is 2 and 3 and evaluate the performance in terms of the capacity and the bit error rate. In addition, we also discuss the probability of the signal separation when the number of the separate parts is equal or greater than 4. Theoretical results and simulation results demonstrate the performance of the proposed scheme.

  • Satellite Constellation Based on High Elevation Angle for Broadband LEO Constellation Satellite Communication System

    Jun XU  Dongming BIAN  Chuang WANG  Gengxin ZHANG  Ruidong LI  

     
    PAPER

      Pubricized:
    2019/05/07
      Vol:
    E102-B No:10
      Page(s):
    1960-1966

    Due to the rapid development of small satellite technology and the advantages of LEO satellite with low delay and low propagation loss as compared with the traditional GEO satellite, the broadband LEO constellation satellite communication system has gradually become one of the most important hot spots in the field of satellite communications. Many countries and satellite communication companies in the world are formulating the project of broadband satellite communication system. The broadband satellite communication system is different from the traditional satellite communication system. The former requires a higher transmission rate. In the case of high-speed transmission, if the low elevation constellation is adopted, the satellite beam will be too much, which will increase the complexity of the satellite. It is difficult to realize the low-cost satellite. By comparing the complexity of satellite realization under different elevation angles to meet the requirement of terminal speed through link computation, this paper puts forward the conception of building broadband LEO constellation satellite communication system with high elevation angle. The constraint relation between satellite orbit altitude and user edge communication elevation angle is proposed by theoretical Eq. deduction. And the simulation is carried out for the satellite orbit altitude and edge communication elevation angle.

  • Compressed Sensing-Based Multi-Abnormality Self-Detecting and Faults Location Method for UAV Swarms

    Fei XIONG  Hai WANG  Aijing LI  Dongping YU  Guodong WU  

     
    PAPER

      Pubricized:
    2019/04/26
      Vol:
    E102-B No:10
      Page(s):
    1975-1982

    The security of Unmanned Aerial Vehicle (UAV) swarms is threatened by the deployment of anti-UAV systems under complicated environments such as battlefield. Specifically, the faults caused by anti-UAV systems exhibit sparse and compressible characteristics. In this paper, in order to improve the survivability of UAV swarms under complicated environments, we propose a novel multi-abnormality self-detecting and faults location method, which is based on compressed sensing (CS) and takes account of the communication characteristics of UAV swarms. The method can locate the faults when UAV swarms are suffering physical damages or signal attacks. Simulations confirm that the proposed method performs well in terms of abnormalities detecting and faults location when the faults quantity is less than 17% of the quantity of UAVs.

  • Throughput Maximization of UAV-Enabled Wireless Network in the Presence of Jammers: Joint Trajectory and Communication Design

    Yang WU  Weiwei YANG  Di ZHANG  Xiaoli SUN  

     
    PAPER

      Pubricized:
    2019/04/26
      Vol:
    E102-B No:10
      Page(s):
    1983-1990

    Unmanned aerial vehicle (UAV) communication has drawn rising interest recently with the distinctive gains brought by its inherent mobility. In this paper, we investigate the throughput maximization problem in UAV-enabled uplink communication, where multiple ground nodes communicate with a UAV while a group of ground jammers send jamming signals to jam the communications between UAV and the ground nodes. In contrast to the previous works that only considering UAV's transmit power allocation and two-dimension (2D) trajectory design, the ground nodes' transmit power allocation and scheduling along with the UAV's three-dimensional (3D) trajectory design are jointly optimized. The formulated throughput maximization problem is a mixed-integer non-convex programme that hard to be solved in general. Thus, we propose an iterative algorithm to make the problem trackable by applying the block coordinate descent and successive convex optimization techniques. Simulation results show that our proposed algorithm outperforms the benchmark methods that improving the throughput of the system significantly.

  • Quantifying Dynamic Leakage - Complexity Analysis and Model Counting-based Calculation - Open Access

    Bao Trung CHU  Kenji HASHIMOTO  Hiroyuki SEKI  

     
    PAPER-Software System

      Pubricized:
    2019/07/11
      Vol:
    E102-D No:10
      Page(s):
    1952-1965

    A program is non-interferent if it leaks no secret information to an observable output. However, non-interference is too strict in many practical cases and quantitative information flow (QIF) has been proposed and studied in depth. Originally, QIF is defined as the average of leakage amount of secret information over all executions of a program. However, a vulnerable program that has executions leaking the whole secret but has the small average leakage could be considered as secure. This counter-intuition raises a need for a new definition of information leakage of a particular run, i.e., dynamic leakage. As discussed in [5], entropy-based definitions do not work well for quantifying information leakage dynamically; Belief-based definition on the other hand is appropriate for deterministic programs, however, it is not appropriate for probabilistic ones.In this paper, we propose new simple notions of dynamic leakage based on entropy which are compatible with existing QIF definitions for deterministic programs, and yet reasonable for probabilistic programs in the sense of [5]. We also investigated the complexity of computing the proposed dynamic leakage for three classes of Boolean programs. We also implemented a tool for QIF calculation using model counting tools for Boolean formulae. Experimental results on popular benchmarks of QIF research show the flexibility of our framework. Finally, we discuss the improvement of performance and scalability of the proposed method as well as an extension to more general cases.

  • Channel-Alignment Based Non-Orthogonal Multiple Access Techniques

    Changyong SHIN  Se-Hyoung CHO  

     
    LETTER-Communication Theory and Signals

      Vol:
    E102-A No:10
      Page(s):
    1431-1437

    This letter presents a non-orthogonal multiple access (NOMA) technique for a two-cell multiple-input multiple-output (MIMO) system that exploits the alignments of inter-cell interference channels and signal channels within a cluster in a cell. The proposed technique finds combiner vectors for users that align the inter-cell interference channels and the signal channels simultaneously. This technique utilizes the aligned interference and signal channels to obtain precoder matrices for base stations through which each data stream modulated by NOMA can be transmitted to the intended cluster without interference. In addition, we derive the sufficient condition for transmit and receive antenna configurations in the MIMO NOMA systems to eliminate inter-cell interference and inter-cluster interference simultaneously. Because the proposed technique effectively suppresses the inter-cell interference, it achieves a higher degree of freedom than the existing techniques relying on an avoidance of inter-cell interference, thereby obtaining a better sum rate performance in high SNR regions. Furthermore, we present the hybrid MIMO NOMA technique, which combines the MIMO NOMA technique exploiting channel alignment with the existing techniques boosting the received signal powers. Using the benefits from these techniques, the proposed hybrid technique achieves a good performance within all SNR regions. The simulation results successfully demonstrate the effectiveness of the proposed techniques on the sum rate performance.

  • Hybridizing Dragonfly Algorithm with Differential Evolution for Global Optimization Open Access

    MeiJun DUAN  HongYu YANG  Bo YANG  XiPing WU  HaiJun LIANG  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2019/07/17
      Vol:
    E102-D No:10
      Page(s):
    1891-1901

    Due to its simplicity and efficiency, differential evolution (DE) has gained the interest of researchers from various fields for solving global optimization problems. However, it is prone to premature convergence at local minima. To overcome this drawback, a novel hybrid dragonfly algorithm with differential evolution (Hybrid DA-DE) for solving global optimization problems is proposed. Firstly, a novel mutation operator is introduced based on the dragonfly algorithm (DA). Secondly, the scaling factor (F) is adjusted in a self-adaptive and individual-dependent way without extra parameters. The proposed algorithm combines the exploitation capability of DE and exploration capability of DA to achieve optimal global solutions. The effectiveness of this algorithm is evaluated using 30 classical benchmark functions with sixteen state-of-the-art meta-heuristic algorithms. A series of experimental results show that Hybrid DA-DE outperforms other algorithms significantly. Meanwhile, Hybrid DA-DE has the best adaptability to high-dimensional problems.

  • Basic Study of Both-Sides Retrodirective System for Minimizing the Leak Energy in Microwave Power Transmission Open Access

    Takayuki MATSUMURO  Yohei ISHIKAWA  Naoki SHINOHARA  

     
    PAPER

      Vol:
    E102-C No:10
      Page(s):
    659-665

    In the beam-type microwave power transmission system, it is required to minimize the interference with communication and the influence on the human body. Retrodirective system that re-radiates a beam in the direction of arrival of a signal is well known as a beam control technique for accurate microwave power transmission. In this paper, we newly propose to apply the retrodirective system to both transmitting and receiving antennas. The leakage to the outside of the system is expected to minimize self-convergently while following the atmospheric fluctuation and the antenna movement by repeating the retrodirective between the transmitting and receiving antenna in this system. We considered this phenomenon theoretically using an infinite array antenna model. Finally, it has been shown by the equivalent circuit simulation that stable transmission can be realized by oscillating the system.

  • Vision Based Nighttime Vehicle Detection Using Adaptive Threshold and Multi-Class Classification

    Yuta SAKAGAWA  Kosuke NAKAJIMA  Gosuke OHASHI  

     
    PAPER

      Vol:
    E102-A No:9
      Page(s):
    1235-1245

    We propose a method that detects vehicles from in-vehicle monocular camera images captured during nighttime driving. Detecting vehicles from their shape is difficult at night; however, many vehicle detection methods focusing on light have been proposed. We detect bright spots by appropriate binarization based on the characteristics of vehicle lights such as brightness and color. Also, as the detected bright spots include lights other than vehicles, we need to distinguish the vehicle lights from other bright spots. Therefore, the bright spots were distinguished using Random Forest, a multiclass classification machine-learning algorithm. The features of bright spots not associated with vehicles were effectively utilized in the vehicle detection in our proposed method. More precisely vehicle detection is performed by giving weights to the results of the Random Forest based on the features of vehicle bright spots and the features of bright spots not related to the vehicle. Our proposed method was applied to nighttime images and confirmed effectiveness.

  • Construction of Subjective Vehicle Detection Evaluation Model Considering Shift from Ground Truth Position

    Naho ITO  Most Shelina AKTAR  Yuukou HORITA  

     
    LETTER

      Vol:
    E102-A No:9
      Page(s):
    1246-1249

    In order to evaluate the vehicle detection method, it is necessary to know the correct vehicle position considered as “ground truth”. We propose indices considering subjective evaluation in vehicle detection utilizing IoU. Subjective evaluation experiments were carried out with respect to misregistration from ground truth in vehicle detection.

  • Location-Based Forwarding with Multi-Destinations in NDN Networks Open Access

    Yoshiki KURIHARA  Yuki KOIZUMI  Toru HASEGAWA  Mayutan ARUMAITHURAI  

     
    PAPER

      Pubricized:
    2019/03/22
      Vol:
    E102-B No:9
      Page(s):
    1822-1831

    Location-based forwarding is a key driver for location-based services. This paper designs forwarding information data structures for location-based forwarding in Internet Service Provider (ISP) scale networks based on Named Data Networking (NDN). Its important feature is a naming scheme which represents locations by leveraging space-filling curves.

  • Multi-Party Computation for Modular Exponentiation Based on Replicated Secret Sharing

    Kazuma OHARA  Yohei WATANABE  Mitsugu IWAMOTO  Kazuo OHTA  

     
    PAPER-Cryptography and Information Security

      Vol:
    E102-A No:9
      Page(s):
    1079-1090

    In recent years, multi-party computation (MPC) frameworks based on replicated secret sharing schemes (RSSS) have attracted the attention as a method to achieve high efficiency among known MPCs. However, the RSSS-based MPCs are still inefficient for several heavy computations like algebraic operations, as they require a large amount and number of communication proportional to the number of multiplications in the operations (which is not the case with other secret sharing-based MPCs). In this paper, we propose RSSS-based three-party computation protocols for modular exponentiation, which is one of the most popular algebraic operations, on the case where the base is public and the exponent is private. Our proposed schemes are simple and efficient in both of the asymptotic and practical sense. On the asymptotic efficiency, the proposed schemes require O(n)-bit communication and O(1) rounds,where n is the secret-value size, in the best setting, whereas the previous scheme requires O(n2)-bit communication and O(n) rounds. On the practical efficiency, we show the performance of our protocol by experiments on the scenario for distributed signatures, which is useful for secure key management on the distributed environment (e.g., distributed ledgers). As one of the cases, our implementation performs a modular exponentiation on a 3,072-bit discrete-log group and 256-bit exponent with roughly 300ms, which is an acceptable parameter for 128-bit security, even in the WAN setting.

  • A Knowledge Representation Based User-Driven Ontology Summarization Method

    Yuehang DING  Hongtao YU  Jianpeng ZHANG  Huanruo LI  Yunjie GU  

     
    LETTER-Data Engineering, Web Information Systems

      Pubricized:
    2019/05/30
      Vol:
    E102-D No:9
      Page(s):
    1870-1873

    As the superstructure of knowledge graph, ontology has been widely applied in knowledge engineering. However, it becomes increasingly difficult to be practiced and comprehended due to the growing data size and complexity of schemas. Hence, ontology summarization surfaced to enhance the comprehension and application of ontology. Existing summarization methods mainly focus on ontology's topology without taking semantic information into consideration, while human understand information based on semantics. Thus, we proposed a novel algorithm to integrate semantic information and topological information, which enables ontology to be more understandable. In our work, semantic and topological information are represented by concept vectors, a set of high-dimensional vectors. Distances between concept vectors represent concepts' similarity and we selected important concepts following these two criteria: 1) the distances from important concepts to normal concepts should be as short as possible, which indicates that important concepts could summarize normal concepts well; 2) the distances from an important concept to the others should be as long as possible which ensures that important concepts are not similar to each other. K-means++ is adopted to select important concepts. Lastly, we performed extensive evaluations to compare our algorithm with existing ones. The evaluations prove that our approach performs better than the others in most of the cases.

  • Reducing CPU Power Consumption with Device Utilization-Aware DVFS for Low-Latency SSDs

    Satoshi IMAMURA  Eiji YOSHIDA  Kazuichi OE  

     
    PAPER-Computer System

      Pubricized:
    2019/06/18
      Vol:
    E102-D No:9
      Page(s):
    1740-1749

    Emerging solid state drives (SSDs) based on a next-generation memory technology have been recently released in market. In this work, we call them low-latency SSDs because the device latency of them is an order of magnitude lower than that of conventional NAND flash SSDs. Although low-latency SSDs can drastically reduce an I/O latency perceived by an application, the overhead of OS processing included in the I/O latency has become noticeable because of the very low device latency. Since the OS processing is executed on a CPU core, its operating frequency should be maximized for reducing the OS overhead. However, a higher core frequency causes the higher CPU power consumption during I/O accesses to low-latency SSDs. Therefore, we propose the device utilization-aware DVFS (DU-DVFS) technique that periodically monitors the utilization of a target block device and applies dynamic voltage and frequency scaling (DVFS) to CPU cores executing I/O-intensive processes only when the block device is fully utilized. In this case, DU-DVFS can reduce the CPU power consumption without hurting performance because the delay of OS processing incurred by decreasing the core frequency can be hidden. Our evaluation with 28 I/O-intensive workloads on a real server containing an Intel® Optane™ SSD demonstrates that DU-DVFS reduces the CPU power consumption by 41.4% on average (up to 53.8%) with a negligible performance degradation, compared to a standard DVFS governor on Linux. Moreover, the evaluation with multiprogrammed workloads composed of I/O-intensive and non-I/O-intensive programs shows that DU-DVFS is also effective for them because it can apply DVFS only to CPU cores executing I/O-intensive processes.

  • Dynamic Throughput Allocation among Multiple Servers for Heterogeneous Storage System

    Zhisheng HUO  Limin XIAO  Zhenxue HE  Xiaoling RONG  Bing WEI  

     
    PAPER-Computer System

      Pubricized:
    2019/05/27
      Vol:
    E102-D No:9
      Page(s):
    1731-1739

    Previous works have studied the throughput allocation of the heterogeneous storage system consisting of SSD and HDD in the dynamic setting where users are not all present in the system simultaneously, but those researches make multiple servers as one large resource pool, and cannot cope with the multi-server environment. We design a dynamic throughput allocation mechanism named DAM, which can handle the throughput allocation of multiple heterogeneous servers in the dynamic setting, and can provide a number of desirable properties. The experimental results show that DAM can make one dynamic throughput allocation of multiple servers for making sure users' local allocations in each server, and can provide one efficient and fair throughput allocation in the whole system.

  • Efficient Approximate 3-Dimensional Point Set Matching Using Root-Mean-Square Deviation Score

    Yoichi SASAKI  Tetsuo SHIBUYA  Kimihito ITO  Hiroki ARIMURA  

     
    PAPER-Optimization

      Vol:
    E102-A No:9
      Page(s):
    1159-1170

    In this paper, we study the approximate point set matching (APSM) problem with minimum RMSD score under translation, rotation, and one-to-one correspondence in d-dimension. Since most of the previous works about APSM problems use similality scores that do not especially care about one-to-one correspondence between points, such as Hausdorff distance, we cannot easily apply previously proposed methods to our APSM problem. So, we focus on speed-up of exhaustive search algorithms that can find all approximate matches. First, we present an efficient branch-and-bound algorithm using a novel lower bound function of the minimum RMSD score for the enumeration version of APSM problem. Then, we modify this algorithm for the optimization version. Next, we present another algorithm that runs fast with high probability when a set of parameters are fixed. Experimental results on both synthetic datasets and real 3-D molecular datasets showed that our branch-and-bound algorithm achieved significant speed-up over the naive algorithm still keeping the advantage of generating all answers.

  • On the Competitive Analysis for the Multi-Objective Time Series Search Problem

    Toshiya ITOH  Yoshinori TAKEI  

     
    PAPER-Optimization

      Vol:
    E102-A No:9
      Page(s):
    1150-1158

    For the multi-objective time series search problem, Hasegawa and Itoh [Theoretical Computer Science, Vol.78, pp.58-66, 2018] presented the best possible online algorithm balanced price policy for any monotone function f:Rk→R. Specifically the competitive ratio with respect to the monotone function f(c1,...,ck)=(c1+…+ck)/k is referred to as the arithmetic mean component competitive ratio. Hasegawa and Itoh derived the explicit representation of the arithmetic mean component competitive ratio for k=2, but it has not been known for any integer k≥3. In this paper, we derive the explicit representations of the arithmetic mean component competitive ratio for k=3 and k=4, respectively. On the other hand, we show that it is computationally difficult to derive the explicit representation of the arithmetic mean component competitive ratio for arbitrary integer k in a way similar to the cases for k=2, 3, and 4.

  • Subnets Generation of Program Nets and Its Application to Software Testing

    Biao WU  Xiaoan BAO  Na ZHANG  Hiromu MORITA  Mitsuru NAKATA  Qi-Wei GE  

     
    PAPER-Mathematical Systems Science

      Vol:
    E102-A No:9
      Page(s):
    1303-1311

    Software testing is an important problem to design a large software system and it is difficult to be solved due to its computational complexity. We try to use program nets to approach this problem. As the first step towards solving software testing problem, this paper provides a technique to generate subnets of a program net and applies this technique to software testing. Firstly, definitions and properties of program nets are introduced based on our previous works, and the explanation of software testing problem is given. Secondly, polynomial algorithms are proposed to generate subnets that can cover all the given program net. Finally, a case study is presented to show how to find subnets covering a given program net by using the proposed algorithms, as well as to show the input test data of the program net for software testing.

  • Upcoming Mood Prediction Using Public Online Social Networks Data: Analysis over Cyber-Social-Physical Dimension

    Chaima DHAHRI  Kazunori MATSUMOTO  Keiichiro HOASHI  

     
    PAPER-Emotional Information Processing

      Pubricized:
    2019/06/21
      Vol:
    E102-D No:9
      Page(s):
    1625-1634

    Upcoming mood prediction plays an important role in different topics such as bipolar depression disorder in psychology and quality-of-life and recommendations on health-related quality of life research. The mood in this study is defined as the general emotional state of a user. In contrast to emotions which is more specific and varying within a day, the mood is described as having either a positive or negative valence[1]. We propose an autonomous system that predicts the upcoming user mood based on their online activities over cyber, social and physical spaces without using extra-devices and sensors. Recently, many researchers have relied on online social networks (OSNs) to detect user mood. However, all the existing works focused on inferring the current mood and only few works have focused on predicting the upcoming mood. For this reason, we define a new goal of predicting the upcoming mood. We, first, collected ground truth data during two months from 383 subjects. Then, we studied the correlation between extracted features and user's mood. Finally, we used these features to train two predictive systems: generalized and personalized. The results suggest a statistically significant correlation between tomorrow's mood and today's activities on OSNs, which can be used to develop a decent predictive system with an average accuracy of 70% and a recall of 75% for the correlated users. This performance was increased to an average accuracy of 79% and a recall of 80% for active users who have more than 30 days of history data. Moreover, we showed that, for non-active users, referring to a generalized system can be a solution to compensate the lack of data at the early stage of the system, but when enough data for each user is available, a personalized system is used to individually predict the upcoming mood.

1841-1860hit(18690hit)