The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ATI(18690hit)

1941-1960hit(18690hit)

  • Weber Centralized Binary Fusion Descriptor for Fingerprint Liveness Detection

    Asera WAYNE ASERA  Masayoshi ARITSUGI  

     
    LETTER-Pattern Recognition

      Pubricized:
    2019/04/17
      Vol:
    E102-D No:7
      Page(s):
    1422-1425

    In this research, we propose a novel method to determine fingerprint liveness to improve the discriminative behavior and classification accuracy of the combined features. This approach detects if a fingerprint is from a live or fake source. In this approach, fingerprint images are analyzed in the differential excitation (DE) component and the centralized binary pattern (CBP) component, which yield the DE image and CBP image, respectively. The images obtained are used to generate a two-dimensional histogram that is subsequently used as a feature vector. To decide if a fingerprint image is from a live or fake source, the feature vector is processed using support vector machine (SVM) classifiers. To evaluate the performance of the proposed method and compare it to existing approaches, we conducted experiments using the datasets from the 2011 and 2015 Liveness Detection Competition (LivDet), collected from four sensors. The results show that the proposed method gave comparable or even better results and further prove that methods derived from combination of features provide a better performance than existing methods.

  • A Fast Non-Overlapping Multi-Camera People Re-Identification Algorithm and Tracking Based on Visual Channel Model

    Chi-Chia SUN  Ming-Hwa SHEU  Jui-Yang CHI  Yan-Kai HUANG  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2019/04/18
      Vol:
    E102-D No:7
      Page(s):
    1342-1348

    In this paper, a nonoverlapping multi-camera and people re-identification algorithm is proposed. It applies inflated major color features for re-identification to reduce computation time. The inflated major color features can dramatically improve efficiency while retaining high accuracy of object re-identification. The proposed method is evaluated over a wide range of experimental databases. The accuracy attains upwards of 40.7% in Rank 1 and 84% in Rank 10 on average, while it obtains three to 15 times faster than algorithms reported in the literature. The proposed algorithm has been implemented on a SOC-FPGA platform to reach 50 FPS with 1280×720 HD resolution and 25 FPS with 1920×1080 FHD resolution for real-time processing. The results show a performance improvement and reduction in computation complexity, which is especially ideal for embedded platform.

  • A Fine-Grained Multicasting of Configuration Data for Coarse-Grained Reconfigurable Architectures

    Takuya KOJIMA  Hideharu AMANO  

     
    PAPER-Computer System

      Pubricized:
    2019/04/05
      Vol:
    E102-D No:7
      Page(s):
    1247-1256

    A novel configuration data compression technique for coarse-grained reconfigurable architectures (CGRAs) is proposed. Reducing the size of configuration data of CGRAs shortens the reconfiguration time especially when the communication bandwidth between a CGRA and a host CPU is limited. In addition, it saves energy consumption of configuration cache and controller. The proposed technique is based on a multicast configuration technique called RoMultiC, which reduces the configuration time by multicasting the same data to multiple PEs (Processing Elements) with two bit-maps. Scheduling algorithms for an optimizing the order of multicasting have been proposed. However, the multicasting is possible only if each PE has completely the same configuration. In general, configuration data for CGRAs can be divided into some fields like machine code formats of general perpose CPUs. The proposed scheme confines a part of fields for multicasting so that the possibility of multicasting more PEs can be increased. This paper analyzes algorithms to find a configuration pattern which maximizes the number of multicasted PEs. We implemented the proposed scheme to CMA (Cool Mega Array), a straight forward CGRA as a case study. Experimental results show that the proposed method achieves 40.0% smaller configuration than a previous method for an image processing application at maximum. The exploration of the multicasted grain size reveals the effective grain size for each algorithm. Furthermore, since both a dynamic power consumption of the configuration controller and a configuration time are improved, it achieves 50.1% reduction of the energy consumption for the configuration with a negligible area overhead.

  • MTTF-Aware Design Methodology of Adaptively Voltage Scaled Circuit with Timing Error Predictive Flip-Flop

    Yutaka MASUDA  Masanori HASHIMOTO  

     
    PAPER

      Vol:
    E102-A No:7
      Page(s):
    867-877

    Adaptive voltage scaling is a promising approach to overcome manufacturing variability, dynamic environmental fluctuation, and aging. This paper focuses on error prediction based adaptive voltage scaling (EP-AVS) and proposes a mean time to failure (MTTF) aware design methodology for EP-AVS circuits. Main contributions of this work include (1) optimization of both voltage-scaled circuit and voltage control logic, and (2) quantitative evaluation of power saving for practically long MTTF. Experimental results show that the proposed EP-AVS design methodology achieves 38.0% power saving while satisfying given target MTTF.

  • Super-Node Based Detection of Redundant Ontology Relations

    Yuehang DING  Hongtao YU  Jianpeng ZHANG  Yunjie GU  Ruiyang HUANG  Shize KANG  

     
    LETTER-Data Engineering, Web Information Systems

      Pubricized:
    2019/04/18
      Vol:
    E102-D No:7
      Page(s):
    1400-1403

    Redundant relations refer to explicit relations which can also be deducted implicitly. Although there exist several ontology redundancy elimination methods, they all do not take equivalent relations into consideration. Actually, real ontologies usually contain equivalent relations; their redundancies cannot be completely detected by existing algorithms. Aiming at solving this problem, this paper proposes a super-node based ontology redundancy elimination algorithm. The algorithm consists of super-node transformation and transitive redundancy elimination. During the super-node transformation process, nodes equivalent to each other are transferred into a super-node. Then by deleting the overlapped edges, redundancies relating to equivalent relations are eliminated. During the transitive redundancy elimination process, redundant relations are eliminated by comparing concept nodes' direct and indirect neighbors. Most notably, we proposed a theorem to validate real ontology's irredundancy. Our algorithm outperforms others on both real ontologies and synthetic dynamic ontologies.

  • 12- and 21-GHz Dual-Band Dual-Circularly Polarized Offset Parabolic Reflector Antenna Fed by Microstrip Antenna Arrays for Satellite Broadcasting Reception Open Access

    Masafumi NAGASAKA  Masaaki KOJIMA  Hisashi SUJIKAI  Jiro HIROKAWA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2019/01/09
      Vol:
    E102-B No:7
      Page(s):
    1323-1333

    In December 2018, satellite broadcasting for 4K/8K ultra-high-definition television (UHDTV) will begin in Japan. It will be provided in the 12-GHz (11.7 to 12.75GHz) band with right- and left-hand circular polarizations. BSAT-4a, a satellite used for broadcasting UHDTV, was successfully launched in September 2017. This satellite has not only 12-GHz-band right- and left-hand circular polarization transponders but also a 21-GHz-band experimental transponder. The 21-GHz (21.4 to 22.0GHz) band has been allocated as the downlink for broadcasting satellite service in ITU-R Regions 1 (Europe, Africa) and 3 (Asia Pacific). To receive services provided over these two frequency bands and with dual-polarization, we implement and evaluated a dual-band and dual-circularly polarized parabolic reflector antenna fed by 12- and 21-GHz-band microstrip antenna arrays with a multilayer structure. The antenna is used to receive 12- and 21-GHz-band signals from in-orbit satellites. The measured and experimental results prove that the proposed antenna performs as a dual-polarized antenna in those two frequency bands and has sufficient performance to receive satellite broadcasts.

  • A Novel Frame Aggregation Scheduler to Solve the Head-of-Line Blocking Problem for Real-Time UDP Traffic in Aggregation-Enabled WLANs

    Linjie ZHU  Bin WU  Zhiwei WEI  Yu TANG  

     
    LETTER-Information Network

      Pubricized:
    2019/03/29
      Vol:
    E102-D No:7
      Page(s):
    1408-1411

    In this letter, a novel frame aggregation scheduler is proposed to solve the head-of-line blocking problem for real-time user datagram protocol (UDP) traffic in error-prone and aggregation-enabled wireless local area networks (WLANs). The key to the proposed scheduler is to break the restriction of in-order delivery over the WLAN. The simulation results show that the proposed scheduler can achieve high UDP goodput and low delay compared to the conventional scheduler.

  • A New Hybrid Ant Colony Optimization Based on Brain Storm Optimization for Feature Selection

    Haomo LIANG  Zhixue WANG  Yi LIU  

     
    LETTER-Fundamentals of Information Systems

      Pubricized:
    2019/04/12
      Vol:
    E102-D No:7
      Page(s):
    1396-1399

    Machine learning algorithms are becoming more and more popular in current era. Data preprocessing especially feature selection is helpful for improving the performance of those algorithms. A new powerful feature selection algorithm is proposed. It combines the advantages of ant colony optimization and brain storm optimization which simulates the behavior of human beings. Six classical datasets and five state-of-art algorithms are used to make a comparison with our algorithm on binary classification problems. The results on accuracy, percent rate, recall rate, and F1 measures show that the developed algorithm is more excellent. Besides, it is no more complex than the compared approaches.

  • Travel Time Prediction System Based on Data Clustering for Waste Collection Vehicles

    Chi-Hua CHEN  Feng-Jang HWANG  Hsu-Yang KUNG  

     
    PAPER-Biocybernetics, Neurocomputing

      Pubricized:
    2019/03/29
      Vol:
    E102-D No:7
      Page(s):
    1374-1383

    In recent years, intelligent transportation system (ITS) techniques have been widely exploited to enhance the quality of public services. As one of the worldwide leaders in recycling, Taiwan adopts the waste collection and disposal policy named “trash doesn't touch the ground”, which requires the public to deliver garbage directly to the collection points for awaiting garbage collection. This study develops a travel time prediction system based on data clustering for providing real-time information on the arrival time of waste collection vehicle (WCV). The developed system consists of mobile devices (MDs), on-board units (OBUs), a fleet management server (FMS), and a data analysis server (DAS). A travel time prediction model utilizing the adaptive-based clustering technique coupled with a data feature selection procedure is devised and embedded in the DAS. While receiving inquiries from users' MDs and relevant data from WCVs' OBUs through the FMS, the DAS performs the devised model to yield the predicted arrival time of WCV. Our experiment result demonstrates that the proposed prediction model achieves an accuracy rate of 75.0% and outperforms the reference linear regression method and neural network technique, the accuracy rates of which are 14.7% and 27.6%, respectively. The developed system is effective as well as efficient and has gone online.

  • Entropy Based Illumination-Invariant Foreground Detection

    Karthikeyan PANJAPPAGOUNDER RAJAMANICKAM  Sakthivel PERIYASAMY  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2019/04/18
      Vol:
    E102-D No:7
      Page(s):
    1434-1437

    Background subtraction algorithms generate a background model of the monitoring scene and compare the background model with the current video frame to detect foreground objects. In general, most of the background subtraction algorithms fail to detect foreground objects when the scene illumination changes. An entropy based background subtraction algorithm is proposed to address this problem. The proposed method adapts to illumination changes by updating the background model according to differences in entropy value between the current frame and the previous frame. This entropy based background modeling can efficiently handle both sudden and gradual illumination variations. The proposed algorithm is tested in six video sequences and compared with four algorithms to demonstrate its efficiency in terms of F-score, similarity and frame rate.

  • Programmable Analog Calculation Unit with Two-Stage Architecture: A Solution of Efficient Vector-Computation Open Access

    Renyuan ZHANG  Takashi NAKADA  Yasuhiko NAKASHIMA  

     
    PAPER

      Vol:
    E102-A No:7
      Page(s):
    878-885

    A programmable analog calculation unit (ACU) is designed for vector computations in continuous-time with compact circuit scale. From our early study, it is feasible to retrieve arbitrary two-variable functions through support vector regression (SVR) in silicon. In this work, the dimensions of regression are expanded for vector computations. However, the hardware cost and computing error greatly increase along with the expansion of dimensions. A two-stage architecture is proposed to organize multiple ACUs for high dimensional regression. The computation of high dimensional vectors is separated into several computations of lower dimensional vectors, which are implemented by the free combination of several ACUs with lower cost. In this manner, the circuit scale and regression error are reduced. The proof-of-concept ACU is designed and simulated in a 0.18μm technology. From the circuit simulation results, all the demonstrated calculations with nine operands are executed without iterative clock cycles by 4960 transistors. The calculation error of example functions is below 8.7%.

  • Several Bits Are Enough: Off-Grid Target Localization in WSNs Using Variational Bayesian EM Algorithm

    Yan GUO  Peng QIAN  Ning LI  

     
    LETTER-Digital Signal Processing

      Vol:
    E102-A No:7
      Page(s):
    926-929

    The compressive sensing has been applied to develop an effective framework for simultaneously localizing multiple targets in wireless sensor networks. Nevertheless, existing methods implicitly use analog measurements, which have infinite bit precision. In this letter, we focus on off-grid target localization using quantized measurements with only several bits. To address this, we propose a novel localization framework for jointly estimating target locations and dealing with quantization errors, based on the novel application of the variational Bayesian Expectation-Maximization methodology. Simulation results highlight its superior performance.

  • Recognition of Moving Object in High Dynamic Scene for Visual Prosthesis

    Fei GUO  Yuan YANG  Yang XIAO  Yong GAO  Ningmei YU  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2019/04/17
      Vol:
    E102-D No:7
      Page(s):
    1321-1331

    Currently, visual perceptions generated by visual prosthesis are low resolution with unruly color and restricted grayscale. This severely restricts the ability of prosthetic implant to complete visual tasks in daily scenes. Some studies explore existing image processing techniques to improve the percepts of objects in prosthetic vision. However, most of them extract the moving objects and optimize the visual percepts in general dynamic scenes. The application of visual prosthesis in daily life scenes with high dynamic is greatly limited. Hence, in this study, a novel unsupervised moving object segmentation model is proposed to automatically extract the moving objects in high dynamic scene. In this model, foreground cues with spatiotemporal edge features and background cues with boundary-prior are exploited, the moving object proximity map are generated in dynamic scene according to the manifold ranking function. Moreover, the foreground and background cues are ranked simultaneously, and the moving objects are extracted by the two ranking maps integration. The evaluation experiment indicates that the proposed method can uniformly highlight the moving object and keep good boundaries in high dynamic scene with other methods. Based on this model, two optimization strategies are proposed to improve the perception of moving objects under simulated prosthetic vision. Experimental results demonstrate that the introduction of optimization strategies based on the moving object segmentation model can efficiently segment and enhance moving objects in high dynamic scene, and significantly improve the recognition performance of moving objects for the blind.

  • Human Activity Identification by Height and Doppler RCS Information Detected by MIMO Radar

    Dai SASAKAWA  Naoki HONMA  Takeshi NAKAYAMA  Shoichi IIZUKA  

     
    PAPER

      Pubricized:
    2019/01/22
      Vol:
    E102-B No:7
      Page(s):
    1270-1278

    This paper introduces a method that identifies human activity from the height and Doppler Radar Cross Section (RCS) information detected by Multiple-Input Multiple-Output (MIMO) radar. This method estimates the three-dimensional target location by applying the MUltiple SIgnal Classification (MUSIC) method to the observed MIMO channel; the Doppler RCS is calculated from the signal reflected from the target. A gesture recognition algorithm is applied to the trajectory of the temporal transition of the estimated human height and the Doppler RCS. In experiments, the proposed method achieves over 90% recognition rate (average).

  • Quality Index for Benchmarking Image Inpainting Algorithms with Guided Regional Statistics

    Song LIANG  Leida LI  Bo HU  Jianying ZHANG  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2019/04/01
      Vol:
    E102-D No:7
      Page(s):
    1430-1433

    This letter presents an objective quality index for benchmarking image inpainting algorithms. Under the guidance of the masks of damaged areas, the boundary region and the inpainting region are first located. Then, the statistical features are extracted from the boundary and inpainting regions respectively. For the boundary region, we utilize Weibull distribution to fit the gradient magnitude histograms of the exterior and interior regions around the boundary, and the Kullback-Leibler Divergence (KLD) is calculated to measure the boundary distortions caused by imperfect inpainting. Meanwhile, the quality of the inpainting region is measured by comparing the naturalness factors between the inpainted image and the reference image. Experimental results demonstrate that the proposed metric outperforms the relevant state-of-the-art quality metrics.

  • Simultaneous Estimation of Dish Locations and Calories with Multi-Task Learning Open Access

    Takumi EGE  Keiji YANAI  

     
    PAPER

      Pubricized:
    2019/04/25
      Vol:
    E102-D No:7
      Page(s):
    1240-1246

    In recent years, a rise in healthy eating has led to various food management applications which have image recognition function to record everyday meals automatically. However, most of the image recognition functions in the existing applications are not directly useful for multiple-dish food photos and cannot automatically estimate food calories. Meanwhile, methodologies on image recognition have advanced greatly because of the advent of Convolutional Neural Network (CNN). CNN has improved accuracies of various kinds of image recognition tasks such as classification and object detection. Therefore, we propose CNN-based food calorie estimation for multiple-dish food photos. Our method estimates dish locations and food calories simultaneously by multi-task learning of food dish detection and food calorie estimation with a single CNN. It is expected to achieve high speed and small network size by simultaneous estimation in a single network. Because currently there is no dataset of multiple-dish food photos annotated with both bounding boxes and food calories, in this work we use two types of datasets alternately for training a single CNN. For the two types of datasets, we use multiple-dish food photos annotated with bounding boxes and single-dish food photos with food calories. Our results showed that our multi-task method achieved higher accuracy, higher speed and smaller network size than a sequential model of food detection and food calorie estimation.

  • Extended Beamforming by Sum and Difference Composite Co-Array for Real-Valued Signals

    Sho IWAZAKI  Koichi ICHIGE  

     
    PAPER-Digital Signal Processing

      Vol:
    E102-A No:7
      Page(s):
    918-925

    We have developed a novel array configuration based on the combination of sum and difference co-arrays. There have been many studies on array antenna configurations that enhance the degree of freedom (DOF) of an array, but the maximum DOF of the difference co-array configuration is often limited. With our proposed array configuration, called “sum and difference composite co-array”, we aim to further enhance the DOF by combining the concept of sum co-array and difference co-array. The performance of the proposed array configuration is evaluated through computer simulated beamforming*.

  • Controller Area Network and Its Reduced Wiring Technology Open Access

    Daisuke UMEHARA  Takeyuki SHISHIDO  

     
    INVITED PAPER

      Pubricized:
    2019/01/22
      Vol:
    E102-B No:7
      Page(s):
    1248-1262

    Controller area network (CAN) has been widely adopted as an in-vehicle communications standard. CAN with flexible data-rate (CAN FD) is defined in the ISO standards to achieve higher data rates than the legacy CAN. A number of CAN nodes can be connected by a single transmission medium, i.e. CAN enables us to constitute cost-effective bus-topology networks. CAN puts carrier sense multiple access with collision resolution (CSMA/CR) into practice by using bit-wise arbitration based on wired logical AND in the physical layer. The most prioritized message is delivered without interruption if two or more CAN nodes transmit messages at the same time due to the bit-wise arbitration. However, the scalability of CAN networks suffers from ringing caused by the signaling mechanism establishing the wired logical AND. We need to reduce networking material in a car in order to reduce the car weight, save the fuel and the cost, and develop a sustainable society by establishing more scalable CAN networks. In this paper, we show a reduced wiring technology for CAN to enhance the network scalability and the cost efficiency.

  • Serially Concatenated CPM in Two-Way Relay Channels with Physical-Layer Network Coding

    Nan SHA  Lihua CHEN  Yuanyuan GAO  Mingxi GUO  Kui XU  

     
    LETTER-Communication Theory and Signals

      Vol:
    E102-A No:7
      Page(s):
    934-937

    A physical-layer network coding (PNC) scheme is developed using serially concatenated continuous phase modulation (SCCPM) with symbol interleavers in a two-way relay channel (TWRC), i.e., SCCPM-PNC. The decoding structure of the relay is designed and the corresponding soft input soft output (SISO) iterative decoding algorithm is discussed. Simulation results show that the proposed SCCPM-PNC scheme performs good performance in bit error rate (BER) and considerable improvements can be achieved by increasing the interleaver size and number of iterations.

  • Stochastic Analysis on Hold Timing Violation in Ultra-Low Temperature Circuits for Functional Test at Room Temperature

    Takahiro NAKAYAMA  Masanori HASHIMOTO  

     
    LETTER

      Vol:
    E102-A No:7
      Page(s):
    914-917

    VLSIs that perform signal processing near infrared sensors cooled to ultra-low temperature are demanded. Delay test of those chips must be executed at ultra-low temperature while functional test could be performed at room temperature as long as hold timing errors do not occur. In this letter, we focus on the hold timing violation and evaluate the feasibility of functional test of ultra-low temperature circuits at room temperature. Experimental evaluation with a case study shows that the functional test at room temperature is possible.

1941-1960hit(18690hit)