The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ATI(18690hit)

1901-1920hit(18690hit)

  • Parameter Identification and State-of-Charge Estimation for Li-Ion Batteries Using an Improved Tree Seed Algorithm

    Weijie CHEN  Ming CAI  Xiaojun TAN  Bo WEI  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2019/05/17
      Vol:
    E102-D No:8
      Page(s):
    1489-1497

    Accurate estimation of the state-of-charge is a crucial need for the battery, which is the most important power source in electric vehicles. To achieve better estimation result, an accurate battery model with optimum parameters is required. In this paper, a gradient-free optimization technique, namely tree seed algorithm (TSA), is utilized to identify specific parameters of the battery model. In order to strengthen the search ability of TSA and obtain more quality results, the original algorithm is improved. On one hand, the DE/rand/2/bin mechanism is employed to maintain the colony diversity, by generating mutant individuals in each time step. On the other hand, the control parameter in the algorithm is adaptively updated during the searching process, to achieve a better balance between the exploitation and exploration capabilities. The battery state-of-charge can be estimated simultaneously by regarding it as one of the parameters. Experiments under different dynamic profiles show that the proposed method can provide reliable and accurate estimation results. The performance of conventional algorithms, such as genetic algorithm and extended Kalman filter, are also compared to demonstrate the superiority of the proposed method in terms of accuracy and robustness.

  • MF-CNN: Traffic Flow Prediction Using Convolutional Neural Network and Multi-Features Fusion

    Di YANG  Songjiang LI  Zhou PENG  Peng WANG  Junhui WANG  Huamin YANG  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2019/05/20
      Vol:
    E102-D No:8
      Page(s):
    1526-1536

    Accurate traffic flow prediction is the precondition for many applications in Intelligent Transportation Systems, such as traffic control and route guidance. Traditional data driven traffic flow prediction models tend to ignore traffic self-features (e.g., periodicities), and commonly suffer from the shifts brought by various complex factors (e.g., weather and holidays). These would reduce the precision and robustness of the prediction models. To tackle this problem, in this paper, we propose a CNN-based multi-feature predictive model (MF-CNN) that collectively predicts network-scale traffic flow with multiple spatiotemporal features and external factors (weather and holidays). Specifically, we classify traffic self-features into temporal continuity as short-term feature, daily periodicity and weekly periodicity as long-term features, then map them to three two-dimensional spaces, which each one is composed of time and space, represented by two-dimensional matrices. The high-level spatiotemporal features learned by CNNs from the matrices with different time lags are further fused with external factors by a logistic regression layer to derive the final prediction. Experimental results indicate that the MF-CNN model considering multi-features improves the predictive performance compared to five baseline models, and achieves the trade-off between accuracy and efficiency.

  • Iris Segmentation Based on Improved U-Net Network Model

    Chunhui GAO  Guorui FENG  Yanli REN  Lizhuang LIU  

     
    LETTER-Neural Networks and Bioengineering

      Vol:
    E102-A No:8
      Page(s):
    982-985

    Accurate segmentation of the region in the iris picture has a crucial influence on the reliability of the recognition system. In this letter, we present an end to end deep neural network based on U-Net. It uses dense connection blocks to replace the original convolutional layer, which can effectively improve the reuse rate of the feature layer. The proposed method takes U-net's skip connections to combine the same-scale feature maps from the upsampling phase and the downsampling phase in the upsampling process (merge layer). In the last layer of downsampling, it uses dilated convolution. The dilated convolution balances the iris region localization accuracy and the iris edge pixel prediction accuracy, further improving network performance. The experiments running on the Casia v4 Interval and IITD datasets, show that the proposed method improves segmentation performance.

  • Recent Activities of 5G Experimental Trials on Massive MIMO Technologies and 5G System Trials Toward New Services Creation Open Access

    Yukihiko OKUMURA  Satoshi SUYAMA  Jun MASHINO  Kazushi MURAOKA  

     
    INVITED PAPER

      Pubricized:
    2019/02/22
      Vol:
    E102-B No:8
      Page(s):
    1352-1362

    In order to cope with recent growth of mobile data traffic and emerging various services, world-wide system trials for the fifth-generation (5G) mobile communication system that dramatically extends capability of the fourth-generation mobile communication system are being performed to launch its commercial service in 2020. In addition, research and development of new radio access technologies for 5G evolution and beyond 5G systems are beginning to be made all over the world. This paper introduces our recent activities on 5G transmission experiments that aim to validate Massive MIMO technologies using higher frequency bands such as SHF/EHF bands, that is, 5G experimental trials. Recent results of 5G system trials to create new services and applications in 5G era in cooperation with partners in vertical industries are also introduced.

  • Digital Beamforming Algorithm for 5G Low-SHF Band Massive MIMO

    Shohei YOSHIOKA  Satoshi SUYAMA  Tatsuki OKUYAMA  Jun MASHINO  Yukihiko OKUMURA  

     
    PAPER

      Pubricized:
    2019/02/20
      Vol:
    E102-B No:8
      Page(s):
    1371-1381

    Towards furthering the industrial revolution, the concept of a new cellular network began to be drawn up around 2010 as the fifth generation (5G) mobile wireless communication system. One of the main differences between the fourth generation (4G) mobile communication system Long Term Evolution (LTE) and 5G new radio (NR) is the frequency bands utilized. 5G NR assumes higher frequency bands. Effective utilization of the higher frequency bands needs to resolve the technical issue of the larger path-loss. Massive multiple-input multiple-output (Massive MIMO) beamforming (BF) technology contributes to overcome this problem, hence further study of Massive MIMO BF for each frequency band is necessary toward high-performance and easy implementation. In this paper, then, we propose a Massive MIMO method with fully-digital BF based on two-tap precoding for low super high frequency (SHF) band downlink (DL) transmissions (called as Digital FBCP). Additionally, three intersite coordination algorithms for Digital FBCP are presented for multi-site environments and one of the three algorithms is enhanced. It is shown that Digital FBCP achieves better throughput performance than a conventional algorithm with one-tap precoding. Considering performance of intersite coordination as well, it is concluded that Digital FBCP can achieve around 5 Gbps in various practical environments.

  • Outdoor Experiments on Long-Range and Mobile Communications Using 39-GHz Band for 5G and Beyond

    Masashi IWABUCHI  Anass BENJEBBOUR  Yoshihisa KISHIYAMA  Guangmei REN  Chen TANG  Tingjian TIAN  Liang GU  Yang CUI  Terufumi TAKADA  

     
    PAPER

      Pubricized:
    2019/02/20
      Vol:
    E102-B No:8
      Page(s):
    1437-1446

    This paper presents results of outdoor experiments conducted in the 39-GHz band. In particular, assuming mobile communications such as the fifth generation mobile communications (5G) and beyond, we focus on achieving 1Gbit/s or greater throughput at transmission distances exceeding 1km in the experiments. In order to enhance the data rate and capacity, the use of higher frequency bands above 6GHz for mobile communications is a new and important technical challenge for 5G and beyond. To extend further the benefits of higher frequency bands to various scenarios, it is important to enable higher frequency bands to basically match the coverage levels of existing low frequency bands. Moreover, mobility is important in mobile communications. Therefore, we assume the 39-GHz band as a candidate frequency for 5G and beyond and prepare experimental equipment that utilizes lens antenna and beam tracking technologies. In the experiments, we achieve the throughput values of 2.14Gbit/s at the transmission distance of 1850m and 1.58Gbit/s at 20-km/h mobility. Furthermore, we show the possibility of achieving high throughput even under non-line-of-sight conditions. These experimental results contribute to clarifying the potential for the 39-GHz band to support gigabit-per-second class data rates while still providing coverage and supporting mobility over a coverage area with distance greater than 1km.

  • Physical Cell ID Detection Probabilities Using Frequency Domain PVS Transmit Diversity for NB-IoT Radio Interface

    Aya SHIMURA  Mamoru SAWAHASHI  Satoshi NAGATA  Yoshihisa KISHIYAMA  

     
    PAPER

      Pubricized:
    2019/02/20
      Vol:
    E102-B No:8
      Page(s):
    1477-1489

    This paper proposes frequency domain precoding vector switching (PVS) transmit diversity for synchronization signals to achieve fast physical cell identity (PCID) detection for the narrowband (NB)-Internet-of-Things (IoT) radio interface. More specifically, we propose localized and distributed frequency domain PVS transmit diversity schemes for the narrowband primary synchronization signal (NPSS) and narrowband secondary synchronization signal (NSSS), and NPSS and NSSS detection methods including a frequency offset estimation method suitable for frequency domain PVS transmit diversity at the receiver in a set of user equipment (UE). We conduct link-level simulations to compare the detection probabilities of NPSS and NSSS, i.e., PCID using the proposed frequency domain PVS transmit diversity schemes, to those using the conventional time domain PVS transmit diversity scheme. The results show that both the distributed and localized frequency domain PVS transmit diversity schemes achieve a PCID detection probability almost identical to that of the time domain PVS transmit diversity scheme when the effect of the frequency offset due to the frequency error of the UE temperature compensated crystal oscillator (TCXO) is not considered. We also show that for a maximum frequency offset of less than approximately 8 kHz, localized PVS transmit diversity achieves almost the same PCID detection probability. It also achieves a higher PCID detection probability than one-antenna transmission although it is degraded compared to the time domain PVS transmit diversity when the maximum frequency offset is greater than approximately 10 kHz.

  • NVRAM-Aware Mapping Table Management for Flash Storage Devices

    Yongju SONG  Sungkyun LEE  Dong Hyun KANG  Young Ik EOM  

     
    LETTER-Data Engineering, Web Information Systems

      Pubricized:
    2019/04/26
      Vol:
    E102-D No:8
      Page(s):
    1576-1580

    Flash storage suffers from severe performance degradation due to its inherent internal synchronization overhead. Especially, flushing an L2P (logical address to physical address) mapping table significantly contributes to the performance degradation. To relieve the problem, we propose an efficient L2P mapping table management scheme on the flash storage, which works along with a small-sized NVRAM. It flushes L2P mapping table from DRAM to NVRAM or flash memory selectively. In our experiments, the proposed scheme shows up to 9.37× better performance than conventional schemes.

  • Graph Similarity Metric Using Graph Convolutional Network: Application to Malware Similarity Match

    Bing-lin ZHAO  Fu-dong LIU  Zheng SHAN  Yi-hang CHEN  Jian LIU  

     
    LETTER-Information Network

      Pubricized:
    2019/05/20
      Vol:
    E102-D No:8
      Page(s):
    1581-1585

    Nowadays, malware is a serious threat to the Internet. Traditional signature-based malware detection method can be easily evaded by code obfuscation. Therefore, many researchers use the high-level structure of malware like function call graph, which is impacted less from the obfuscation, to find the malware variants. However, existing graph match methods rely on approximate calculation, which are inefficient and the accuracy cannot be effectively guaranteed. Inspired by the successful application of graph convolutional network in node classification and graph classification, we propose a novel malware similarity metric method based on graph convolutional network. We use graph convolutional network to compute the graph embedding vectors, and then we calculate the similarity metric of two graph based on the distance between two graph embedding vectors. Experimental results on the Kaggle dataset show that our method can applied to the graph based malware similarity metric method, and the accuracy of clustering application with our method reaches to 97% with high time efficiency.

  • Experimental Study of Large-Scale Coordinated Multi-User MIMO for 5G Ultra High-Density Distributed Antenna Systems

    Takaharu KOBAYASHI  Masafumi TSUTSUI  Takashi DATEKI  Hiroyuki SEKI  Morihiko MINOWA  Chiyoshi AKIYAMA  Tatsuki OKUYAMA  Jun MASHINO  Satoshi SUYAMA  Yukihiko OKUMURA  

     
    PAPER

      Pubricized:
    2019/02/20
      Vol:
    E102-B No:8
      Page(s):
    1390-1400

    Fifth-generation mobile communication systems (5G) must offer significantly higher system capacity than 4G in order to accommodate the rapidly increasing mobile data traffic. Cell densification has been considered an effective way to increase system capacity. Unfortunately, each user equipment (UE) will be in line-of-sight to many more transmission points (TPs) and the resulting inter-cell interference will degrade system capacity. We propose large-scale coordinated multi-user multiple-input multiple-output (LSC-MU-MIMO), which combines MU-MIMO with joint transmission from all the TPs connected to a centralized baseband unit. We previously investigated the downlink performance of LSC-MU-MIMO by computer simulation and found that it can significantly reduce inter-TP interference and improve the system capacity of high-density small cells. In this paper, we investigate the throughput of LSC-MU-MIMO through an indoor trial where the number of coordinated TPs is up to sixteen by using an experimental system that can execute real-time channel estimation based on TDD reciprocity and real-time data transmission. To clarify the improvement in the system capacity of LSC-MU-MIMO, we compared the throughput measured in the same experimental area with and without coordinated transmission in 4-TP, 8-TP, and 16-TP configurations. The results show that with coordinated transmission the system capacity is almost directly proportional to the number of TPs.

  • AN-Aided Transmission Design for Secure MIMO Cognitive Radio Network with SWIPT

    Xinyu DA  Lei NI  Hehao NIU  Hang HU  Shaohua YUE  Miao ZHANG  

     
    PAPER-Cryptography and Information Security

      Vol:
    E102-A No:8
      Page(s):
    946-952

    In this work, we investigate a joint transmit beamforming and artificial noise (AN) covariance matrix design in a multiple-input multiple-output (MIMO) cognitive radio (CR) downlink network with simultaneous wireless information and power transfer (SWIPT), where the malicious energy receivers (ERs) may decode the desired information and hence can be treated as potential eavesdroppers (Eves). In order to improve the secure performance of the transmission, AN is embedded to the information-bearing signal, which acts as interference to the Eves and provides energy to all receivers. Specifically, this joint design is studied under a practical non-linear energy harvesting (EH) model, our aim is to maximize the secrecy rate at the SR subject to the transmit power budget, EH constraints and quality of service (QoS) requirement. The original problem is not convex and challenging to be solved. To circumvent its intractability, an equivalent reformulation of this secrecy rate maximization (SRM) problem is introduced, wherein the resulting problem is primal decomposable and thus can be handled by alternately solving two convex subproblems. Finally, numerical results are presented to verify the effectiveness of our proposed scheme.

  • SCSE: Boosting Symbolic Execution via State Concretization

    Huibin WANG  Chunqiang LI  Jianyi MENG  Xiaoyan XIANG  

     
    PAPER-Software Engineering

      Pubricized:
    2019/04/26
      Vol:
    E102-D No:8
      Page(s):
    1506-1516

    Symbolic execution is capable of automatically generating tests that achieve high coverage. However, its practical use is limited by the scalability problem. To mitigate it, this paper proposes State Concretization based Symbolic Execution (SCSE). SCSE speeds up symbolic execution via state concretization. Specifically, by introducing a concrete store, our approach avoids invoking the constraint solver to check path feasibility at conditional instructions. Intuitively, there is no need to check the feasibility of a path along a concrete execution since it is always feasible. With state concretization, the number of solver queries greatly decreases, thus improving the efficiency of symbolic execution. Through experimental evaluation on real programs, we show that state concretization helps to speed up symbolic execution significantly.

  • OpenACC Parallelization of Stochastic Simulations on GPUs

    Pilsung KANG  

     
    LETTER-Fundamentals of Information Systems

      Pubricized:
    2019/05/17
      Vol:
    E102-D No:8
      Page(s):
    1565-1568

    We present an OpenACC-based parallelization implementation of stochastic algorithms for simulating biochemical reaction networks on modern GPUs (graphics processing units). To investigate the effectiveness of using OpenACC for leveraging the massive hardware parallelism of the GPU architecture, we carefully apply OpenACC's language constructs and mechanisms to implementing a parallel version of stochastic simulation algorithms on the GPU. Using our OpenACC implementation in comparison to both the NVidia CUDA and the CPU-based implementations, we report our initial experiences on OpenACC's performance and programming productivity in the context of GPU-accelerated scientific computing.

  • Experimental Evaluation of Synchronized SS-CDMA Transmission Timing Control Method for QZSS Short Message Communication

    Suguru KAMEDA  Kei OHYA  Hiroshi OGUMA  Noriharu SUEMATSU  

     
    PAPER-Satellite Communications

      Pubricized:
    2019/01/25
      Vol:
    E102-B No:8
      Page(s):
    1781-1790

    We have already proposed synchronized spread spectrum code division multiple access (SS-CDMA) for the Quasi-Zenith Satellite System (QZSS) safety confirmation system to be used in times of great disaster. In this system, the satellite reception timings of all uplink signals are synchronized using a transmission timing control method in order to realize high-density user multiple access. An issue that should be addressed in order for this system to be viable is the error that can occur in the satellite reception timing. This error occurs due to the terminal time deviation and the error in calculating the propagation delay to the satellite. In this paper, we measure the terminal time deviation and the propagation delay calculation error at the same time by using the same receivers and evaluate the satellite reception timing error of the uplink signal. By this measurement, it is shown that satellite reception timing error within 50ns can be realized in 99.98% of mobile terminals. This shows that the synchronized SS-CDMA with the transmission timing control method has a potential to realize the QZSS short message system with high-density user multiple access.

  • Performance Analysis of Fiber-Optic Relaying with Simultaneous Transmission and Reception on the Same Carrier Frequency Open Access

    Hiroki UTATSU  Hiroyuki OTSUKA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2019/02/20
      Vol:
    E102-B No:8
      Page(s):
    1771-1780

    Denser infrastructures can reduce terminal-to-infrastructure distance and thus improve the link budget in mobile communication systems. One such infrastructure, relaying can reduce the distance between the donor evolved node B (eNB) and user equipment (UE). However, conventional relaying suffers from geographical constraints, i.e., installation site, and difficulty in simultaneous transmission and reception on the same carrier frequency. Therefore, we propose a new type of fiber-optic relaying in which the antenna facing the eNB is geographically separated from the antenna facing the UE, and the two antennas are connected by an optical fiber. This structure aims to extend coverage to heavily shadowed areas. Our primary objective is to establish a design method for the proposed fiber-optic relaying in the presence of self-interference, which is the interference between the backhaul and access links, when the backhaul and access links simultaneously operate on the same carrier frequency. In this paper, we present the performance of the fiber-optic relaying in the presence of intra- and inter-cell interferences as well as self-interference. The theoretical desired-to-undesired-signal ratio for both uplink and downlink is investigated as parameters of the optical fiber length. We demonstrate the possibility of fiber-optic relaying with simultaneous transmission and reception on the same carrier frequency for the backhaul and access links. We validate the design method for the proposed fiber-optic relay system using these results.

  • Cross-Layer Optimal Power Allocation Scheme for Two-Way Relaying System with Amplify-and-Forward Policy

    Hui ZHI  Yukun ZHA  Xiaotong FANG  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2019/02/20
      Vol:
    E102-B No:8
      Page(s):
    1741-1750

    A novel adaptive cross-layer optimal power allocation (OPA) scheme over physical layer and data-link layer for two-way relaying system with amplify-and-forward policy (TWR-AF) is proposed in this paper. Our goal is to find the optimal power allocation factors under each channel state information (CSI) to maximize the sum throughput of two sources under total transmit power constraint in the physical layer while guaranteeing the statistical delay quality-of-service (QoS) requirement in the data-link layer. By integrating information theory with the concept of effective capacity, the OPA problem is formulated into an optimization problem to maximize the sum effective capacity. It is solved through Lagrange multiplier approach, and the optimal power allocation factors are presented. Simulations are developed and the results show that the proposed cross-layer OPA scheme can achieve the best sum effective capacity with relatively low complexity when compared with other schemes. In addition, the proposed cross-layer OPA scheme achieves the maximal sum effective capacity when the relay is located in (or near) the middle of the two source nodes, and the sum effective capacity becomes smaller when the difference between two QoS exponents becomes larger.

  • Iterative Adversarial Inference with Re-Inference Chain for Deep Graphical Models

    Zhihao LIU  Hui YIN  Hua HUANG  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2019/05/07
      Vol:
    E102-D No:8
      Page(s):
    1586-1589

    Deep Graphical Model (DGM) based on Generative Adversarial Nets (GANs) has shown promise in image generation and latent variable inference. One of the typical models is the Iterative Adversarial Inference model (GibbsNet), which learns the joint distribution between the data and its latent variable. We present RGNet (Re-inference GibbsNet) which introduces a re-inference chain in GibbsNet to improve the quality of generated samples and inferred latent variables. RGNet consists of the generative, inference, and discriminative networks. An adversarial game is cast between the generative and inference networks and the discriminative network. The discriminative network is trained to distinguish between (i) the joint inference-latent/data-space pairs and re-inference-latent/data-space pairs and (ii) the joint sampled-latent/generated-data-space pairs. We show empirically that RGNet surpasses GibbsNet in the quality of inferred latent variables and achieves comparable performance on image generation and inpainting tasks.

  • Power Allocation Scheme for Energy Efficiency Maximization in Distributed Antenna System with Discrete-Rate Adaptive Modulation

    Xiangbin YU  Xi WANG  Tao TENG  Qiyishu LI  Fei WANG  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2019/02/12
      Vol:
    E102-B No:8
      Page(s):
    1705-1714

    In this paper, we study the power allocation (PA) scheme design for energy efficiency (EE) maximization with discrete-rate adaptive modulation (AM) in the downlink distributed antenna system (DAS). By means of the Karush-Kuhn-Tucker (KKT) conditions, an optimal PA scheme with closed-form expression is derived for maximizing the EE subject to maximum transmit power and target bit error rate (BER) constraints, where the number of active transmit antennas is also derived for attaining PA coefficients. Considering that the optimal scheme needs to calculate the PA of all transmit antennas for each modulation mode, its complexity is extremely high. For this reason, a low-complexity suboptimal PA is also presented based on the antenna selection method. By choosing one or two remote antennas, the suboptimal scheme offers lower complexity than the optimal one, and has almost the same EE performance as the latter. Besides, the outage probability is derived in a performance evaluation. Computer simulation shows that the developed optimal scheme can achieve the same EE as the exhaustive search based approach, which has much higher complexity, and the suboptimal scheme almost matches the EE of the optimal one as well. The suboptimal scheme with two-antenna selection is particularly effective in terms of balancing performance and complexity. Moreover, the derived outage probability is in good agreement with the corresponding simulation.

  • Saccade Information Based Directional Heat Map Generation for Gaze Data Visualization

    Yinwei ZHAN  Yaodong LI  Zhuo YANG  Yao ZHAO  Huaiyu WU  

     
    LETTER-Computer Graphics

      Pubricized:
    2019/05/15
      Vol:
    E102-D No:8
      Page(s):
    1602-1605

    Heat map is an important tool for eye tracking data analysis and visualization. It is very intuitive to express the area watched by observer, but ignores saccade information that expresses gaze shift. Based on conventional heat map generation method, this paper presents a novel heat map generation method for eye tracking data. The proposed method introduces a mixed data structure of fixation points and saccades, and considers heat map deformation for saccade type data. The proposed method has advantages on indicating gaze transition direction while visualizing gaze region.

  • An Intelligent and Decentralized Content Diffusion System in Smart-Router Networks

    Hanxing XUE  Jiali YOU  Jinlin WANG  

     
    PAPER-Network

      Pubricized:
    2019/02/12
      Vol:
    E102-B No:8
      Page(s):
    1595-1606

    Smart-routers develop greatly in recent years as one of the representative products of IoT and Smart home. Different from traditional routers, they have storage and processing capacity. Actually, smart-routers in the same location or ISP have better link conditions and can provide high quality service to each other. Therefore, for the content required services, how to construct the overlay network and efficiently deploy replications of popular content in smart-routers' network are critical. The performance of existing centralized models is limited by the bottleneck of the single point's performance. In order to improve the stability and scalability of the system through the capability of smart-router, we propose a novel intelligent and decentralized content diffusion system in smart-router network. In the system, the content will be quickly and autonomously diffused in the network which follows the specific requirement of coverage rate in neighbors. Furthermore, we design a heuristic node selection algorithm (MIG) and a replacement algorithm (MCL) to assist the diffusion of content. Specifically, system based MIG will select neighbor with the maximum value of information gain to cache the replication. The replication with the least loss of the coverage rate gain will be replaced in the system based on MCL. Through the simulation experiments, at the same requirement of coverage rate, MIG can reduce the number of replications by at least 20.2% compared with other algorithms. Compared with other replacement algorithms, MCL achieves the best successful service rate which means how much ratio of the service can be provided by neighbors. The system based on the MIG and MCL can provide stable service with the lowest bandwidth and storage cost.

1901-1920hit(18690hit)