The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ATI(18690hit)

1861-1880hit(18690hit)

  • Efficient Class-Incremental Learning Based on Bag-of-Sequencelets Model for Activity Recognition

    Jong-Woo LEE  Ki-Sang HONG  

     
    PAPER-Vision

      Vol:
    E102-A No:9
      Page(s):
    1293-1302

    We propose a class-incremental learning framework for human activity recognition based on the Bag-of-Sequencelets model (BoS). The framework updates learned models efficiently without having to relearn them when training data of new classes are added. In this framework, all types of features including hand-crafted features and Convolutional Neural Networks (CNNs) based features and combinations of those features can be used as features for videos. Compared with the original BoS, the new framework can reduce the learning time greatly with little loss of classification accuracy.

  • Calibration of Turntable Based 3D Scanning Systems

    Duhu MAN  Mark W. JONES  Danrong LI  Honglong ZHANG  Zhan SONG  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2019/05/30
      Vol:
    E102-D No:9
      Page(s):
    1833-1841

    The consistent alignment of point clouds obtained from multiple scanning positions is a crucial step for many 3D modeling systems. This is especially true for environment modeling. In order to observe the full scene, a common approach is to rotate the scanning device around a rotation axis using a turntable. The final alignment of each frame data can be computed from the position and orientation of the rotation axis. However, in practice, the precise mounting of scanning devices is impossible. It is hard to locate the vertical support of the turntable and rotation axis on a common line, particularly for lower cost consumer hardware. Therefore the calibration of the rotation axis of the turntable is an important step for the 3D reconstruction. In this paper we propose a novel calibration method for the rotation axis of the turntable. With the proposed rotation axis calibration method, multiple 3D profiles of the target scene can be aligned precisely. In the experiments, three different evaluation approaches are used to evaluate the calibration accuracy of the rotation axis. The experimental results show that the proposed rotation axis calibration method can achieve a high accuracy.

  • Vision Based Nighttime Vehicle Detection Using Adaptive Threshold and Multi-Class Classification

    Yuta SAKAGAWA  Kosuke NAKAJIMA  Gosuke OHASHI  

     
    PAPER

      Vol:
    E102-A No:9
      Page(s):
    1235-1245

    We propose a method that detects vehicles from in-vehicle monocular camera images captured during nighttime driving. Detecting vehicles from their shape is difficult at night; however, many vehicle detection methods focusing on light have been proposed. We detect bright spots by appropriate binarization based on the characteristics of vehicle lights such as brightness and color. Also, as the detected bright spots include lights other than vehicles, we need to distinguish the vehicle lights from other bright spots. Therefore, the bright spots were distinguished using Random Forest, a multiclass classification machine-learning algorithm. The features of bright spots not associated with vehicles were effectively utilized in the vehicle detection in our proposed method. More precisely vehicle detection is performed by giving weights to the results of the Random Forest based on the features of vehicle bright spots and the features of bright spots not related to the vehicle. Our proposed method was applied to nighttime images and confirmed effectiveness.

  • APS: Audience Presentation System Using Mobile Devices Open Access

    Haeyoung LEE  

     
    LETTER-Educational Technology

      Pubricized:
    2019/06/04
      Vol:
    E102-D No:9
      Page(s):
    1887-1889

    It is not easy for a student to present a question or comment to the lecturer and other students in large classes. This paper introduces a new audience presentation system (APS), which creates slide presentations of students' mobile responses in the classroom. Experimental surveys demonstrate the utility of this APS for classroom interactivity.

  • Two-Level Named Packet Forwarding for Enhancing the Performance of Virtualized ICN Router

    Kazuaki UEDA  Kenji YOKOTA  Jun KURIHARA  Atsushi TAGAMI  

     
    PAPER

      Pubricized:
    2019/03/22
      Vol:
    E102-B No:9
      Page(s):
    1813-1821

    Information-Centric Networking (ICN) can offer rich functionalities to the network, e.g, in-network caching, and name-based forwarding. Incremental deployment of ICN is a key challenge that enable smooth migration from current IP network to ICN. We can say that Network Function Virtualization (NFV) must be one of the key technologies to achieve this deployment because of its flexibility to support new network functions. However, when we consider the ICN deployment with NFV, there exist two performance issues, processing delay of name-based forwarding and computational overhead of virtual machine. In this paper we proposed a NFV infrastructure-assisted ICN packet forwarding by integrating the name look-up to the Open vSwitch. The contributions are twofold: 1) First, we provide the novel name look-up scheme that can forward ICN packets without costly longest prefix match searching. 2) Second, we design the ICN packet forwarding scheme that integrates the partial name look-up into the virtualization infrastructure to mitigate computation overhead.

  • On Scaling Property of Information-Centric Networking

    Ryo NAKAMURA  Hiroyuki OHSAKI  

     
    PAPER

      Pubricized:
    2019/03/22
      Vol:
    E102-B No:9
      Page(s):
    1804-1812

    In this paper, we focus on a large-scale ICN (Information-Centric Networking), and reveal the scaling property of ICN. Because of in-network content caching, ICN is a sort of cache networks and expected to be a promising architecture for replacing future Internet. To realize a global-scale (e.g., Internet-scale) ICN, it is crucial to understand the fundamental properties of such large-scale cache networks. However, the scaling property of ICN has not been well understood due to the lack of theoretical foundations and analysis methodologies. For answering research questions regarding the scaling property of ICN, we derive the cache hit probability at each router, the average content delivery delay of each entity, and the average content delivery delay of all entities over a content distribution tree comprised of a single repository (i.e., content provider), multiple routers, and multiple entities (i.e., content consumers). Through several numerical examples, we investigate the effect of the topology and the size of the content distribution tree and the cache size at routers on the average content delivery delay of all entities. Our findings include that the average content delivery delay of ICNs converges to a constant value if the cache size of routers are not small, which implies high scalability of ICNs, and that even when the network size would grow indefinitely, the average content delivery delay is upper-bounded by a constant value if routers in the network are provided with a fair amount of content caches.

  • The Secure Parameters and Efficient Decryption Algorithm for Multivariate Public Key Cryptosystem EFC Open Access

    Yacheng WANG  Yasuhiko IKEMATSU  Dung Hoang DUONG  Tsuyoshi TAKAGI  

     
    PAPER-Cryptography and Information Security

      Vol:
    E102-A No:9
      Page(s):
    1028-1036

    At PQCrypto 2016, Szepieniec et al. proposed a new type of trapdoor called Extension Field Cancellation (EFC) for constructing secure multivariate encryption cryptosystems. They also specifically suggested two schemes EFCp- and EFCpt2- that apply this trapdoor and some modifiers. Although both of them seem to avoid all attacks used for cryptanalysis on multivariate cryptography, their decryption efficiency has room for improvement. On the other hand, their security was analyzed mainly through an algebraic attack of computing the Gröbner basis of the public key, and there possibly exists more effective attacks. In this paper, we introduce a more efficient decryption approach for EFCp- and EFCpt2-, which manages to avoid all redundant computation involved in the original decryption algorithms without altering their public key. In addition, we estimate the secure parameters for EFCp- and EFCpt2- through a hybrid attack of algebraic attack and exhaustive search.

  • Efficient Approximate 3-Dimensional Point Set Matching Using Root-Mean-Square Deviation Score

    Yoichi SASAKI  Tetsuo SHIBUYA  Kimihito ITO  Hiroki ARIMURA  

     
    PAPER-Optimization

      Vol:
    E102-A No:9
      Page(s):
    1159-1170

    In this paper, we study the approximate point set matching (APSM) problem with minimum RMSD score under translation, rotation, and one-to-one correspondence in d-dimension. Since most of the previous works about APSM problems use similality scores that do not especially care about one-to-one correspondence between points, such as Hausdorff distance, we cannot easily apply previously proposed methods to our APSM problem. So, we focus on speed-up of exhaustive search algorithms that can find all approximate matches. First, we present an efficient branch-and-bound algorithm using a novel lower bound function of the minimum RMSD score for the enumeration version of APSM problem. Then, we modify this algorithm for the optimization version. Next, we present another algorithm that runs fast with high probability when a set of parameters are fixed. Experimental results on both synthetic datasets and real 3-D molecular datasets showed that our branch-and-bound algorithm achieved significant speed-up over the naive algorithm still keeping the advantage of generating all answers.

  • On the Competitive Analysis for the Multi-Objective Time Series Search Problem

    Toshiya ITOH  Yoshinori TAKEI  

     
    PAPER-Optimization

      Vol:
    E102-A No:9
      Page(s):
    1150-1158

    For the multi-objective time series search problem, Hasegawa and Itoh [Theoretical Computer Science, Vol.78, pp.58-66, 2018] presented the best possible online algorithm balanced price policy for any monotone function f:Rk→R. Specifically the competitive ratio with respect to the monotone function f(c1,...,ck)=(c1+…+ck)/k is referred to as the arithmetic mean component competitive ratio. Hasegawa and Itoh derived the explicit representation of the arithmetic mean component competitive ratio for k=2, but it has not been known for any integer k≥3. In this paper, we derive the explicit representations of the arithmetic mean component competitive ratio for k=3 and k=4, respectively. On the other hand, we show that it is computationally difficult to derive the explicit representation of the arithmetic mean component competitive ratio for arbitrary integer k in a way similar to the cases for k=2, 3, and 4.

  • Automatic Stop Word Generation for Mining Software Artifact Using Topic Model with Pointwise Mutual Information

    Jung-Been LEE  Taek LEE  Hoh Peter IN  

     
    PAPER-Software Engineering

      Pubricized:
    2019/05/27
      Vol:
    E102-D No:9
      Page(s):
    1761-1772

    Mining software artifacts is a useful way to understand the source code of software projects. Topic modeling in particular has been widely used to discover meaningful information from software artifacts. However, software artifacts are unstructured and contain a mix of textual types within the natural text. These software artifact characteristics worsen the performance of topic modeling. Among several natural language pre-processing tasks, removing stop words to reduce meaningless and uninteresting terms is an efficient way to improve the quality of topic models. Although many approaches are used to generate effective stop words, the lists are outdated or too general to apply to mining software artifacts. In addition, the performance of the topic model is sensitive to the datasets used in the training for each approach. To resolve these problems, we propose an automatic stop word generation approach for topic models of software artifacts. By measuring topic coherence among words in the topic using Pointwise Mutual Information (PMI), we added words with a low PMI score to our stop words list for every topic modeling loop. Through our experiment, we proved that our stop words list results in a higher performance of the topic model than lists from other approaches.

  • A New Method for Futures Price Trends Forecasting Based on BPNN and Structuring Data

    Weijun LU  Chao GENG  Dunshan YU  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2019/05/28
      Vol:
    E102-D No:9
      Page(s):
    1882-1886

    Forecasting commodity futures price is a challenging task. We present an algorithm to predict the trend of commodity futures price based on a type of structuring data and back propagation neural network. The random volatility of futures can be filtered out in the structuring data. Moreover, it is not restricted by the type of futures contract. Experiments show the algorithm can achieve 80% accuracy in predicting price trends.

  • Shortening the Libert-Peters-Yung Revocable Group Signature Scheme by Using the Random Oracle Methodology

    Kazuma OHARA  Keita EMURA  Goichiro HANAOKA  Ai ISHIDA  Kazuo OHTA  Yusuke SAKAI  

     
    PAPER-Cryptography and Information Security

      Vol:
    E102-A No:9
      Page(s):
    1101-1117

    At EUROCRYPT 2012, Libert, Peters and Yung (LPY) proposed the first scalable revocable group signature (R-GS) scheme in the standard model which achieves constant signing/verification costs and other costs regarding signers are at most logarithmic in N, where N is the maximum number of group members. However, although the LPY R-GS scheme is asymptotically quite efficient, this scheme is not sufficiently efficient in practice. For example, the signature size of the LPY scheme is roughly 10 times larger than that of an RSA signature (for 160-bit security). In this paper, we propose a compact R-GS scheme secure in the random oracle model that is efficient not only in the asymptotic sense but also in practical parameter settings. We achieve the same efficiency as the LPY scheme in an asymptotic sense, and the signature size is nearly equal to that of an RSA signature (for 160-bit security). It is particularly worth noting that our R-GS scheme has the smallest signature size compared to those of previous R-GS schemes which enable constant signing/verification costs. Our technique, which we call parallel Boneh-Boyen-Shacham group signature technique, helps to construct an R-GS scheme without following the technique used in LPY, i.e., we directly apply the Naor-Naor-Lotspiech framework without using any identity-based encryption.

  • Cross-VM Cache Timing Attacks on Virtualized Network Functions

    Youngjoo SHIN  

     
    LETTER-Information Network

      Pubricized:
    2019/05/27
      Vol:
    E102-D No:9
      Page(s):
    1874-1877

    Network function virtualization (NFV) achieves the flexibility of network service provisioning by using virtualization technology. However, NFV is exposed to a serious security threat known as cross-VM cache timing attacks. In this letter, we look into real security impacts on network virtualization. Specifically, we present two kinds of practical cache timing attacks on virtualized firewalls and routers. We also propose some countermeasures to mitigate such attacks on virtualized network functions.

  • Effects of Software Modifications and Development After an Organizational Change on Software Metrics Value Open Access

    Ryo ISHIZUKA  Naohiko TSUDA  Hironori WASHIZAKI  Yoshiaki FUKAZAWA  Shunsuke SUGIMURA  Yuichiro YASUDA  

     
    LETTER-Software Quality Management

      Pubricized:
    2019/06/13
      Vol:
    E102-D No:9
      Page(s):
    1693-1695

    Deterioration of software quality developed by multiple organizations has become a serious problem. To predict software degradation after an organizational change, this paper investigates the influence of quality deterioration on software metrics by analyzing three software projects. To detect factors indicating a low evolvability, we focus on the relationships between the change in software metric values and refactoring tendencies. Refactoring after an organization change impacts the quality.

  • Smart Ambulance Approach Alarm System Using Smartphone

    Toru KOBAYASHI  Fukuyoshi KIMURA  Tetsuo IMAI  Kenichi ARAI  

     
    LETTER-Notification System

      Pubricized:
    2019/06/21
      Vol:
    E102-D No:9
      Page(s):
    1689-1692

    In order to operate an ambulance efficiently, we developed a Smart Ambulance Approach Alarm System using smartphone, by notifying the approach of an ambulance to other vehicles on public roads. The position information of ambulances has not been opened in view of development costs and privacy protection. Therefore, our study opens the position information inexpensively by loading commodity smartphones, not special devices, into ambulances. The position information is made to be open as minimum necessary information by our developed cloud server application, considering dynamic state of other vehicles on public roads and privacy of ambulance service users. We tested the functional efficiency of this system by the demonstration experiment on public roads.

  • Subnets Generation of Program Nets and Its Application to Software Testing

    Biao WU  Xiaoan BAO  Na ZHANG  Hiromu MORITA  Mitsuru NAKATA  Qi-Wei GE  

     
    PAPER-Mathematical Systems Science

      Vol:
    E102-A No:9
      Page(s):
    1303-1311

    Software testing is an important problem to design a large software system and it is difficult to be solved due to its computational complexity. We try to use program nets to approach this problem. As the first step towards solving software testing problem, this paper provides a technique to generate subnets of a program net and applies this technique to software testing. Firstly, definitions and properties of program nets are introduced based on our previous works, and the explanation of software testing problem is given. Secondly, polynomial algorithms are proposed to generate subnets that can cover all the given program net. Finally, a case study is presented to show how to find subnets covering a given program net by using the proposed algorithms, as well as to show the input test data of the program net for software testing.

  • A Cross-Platform Study on Emerging Malicious Programs Targeting IoT Devices Open Access

    Tao BAN  Ryoichi ISAWA  Shin-Ying HUANG  Katsunari YOSHIOKA  Daisuke INOUE  

     
    LETTER-Cybersecurity

      Pubricized:
    2019/06/21
      Vol:
    E102-D No:9
      Page(s):
    1683-1685

    Along with the proliferation of IoT (Internet of Things) devices, cyberattacks towards them are on the rise. In this paper, aiming at efficient precaution and mitigation of emerging IoT cyberthreats, we present a multimodal study on applying machine learning methods to characterize malicious programs which target multiple IoT platforms. Experiments show that opcode sequences obtained from static analysis and API sequences obtained by dynamic analysis provide sufficient discriminant information such that IoT malware can be classified with near optimal accuracy. Automated and accelerated identification and mitigation of new IoT cyberthreats can be enabled based on the findings reported in this study.

  • Enumerating Highly-Edge-Connected Spanning Subgraphs

    Katsuhisa YAMANAKA  Yasuko MATSUI  Shin-ichi NAKANO  

     
    PAPER-Graph algorithms

      Vol:
    E102-A No:9
      Page(s):
    1002-1006

    In this paper, we consider the problem of enumerating spanning subgraphs with high edge-connectivity of an input graph. Such subgraphs ensure multiple routes between two vertices. We first present an algorithm that enumerates all the 2-edge-connected spanning subgraphs of a given plane graph with n vertices. The algorithm generates each 2-edge-connected spanning subgraph of the input graph in O(n) time. We next present an algorithm that enumerates all the k-edge-connected spanning subgraphs of a given general graph with m edges. The algorithm generates each k-edge-connected spanning subgraph of the input graph in O(mT) time, where T is the running time to check the k-edge-connectivity of a graph.

  • Multi-Party Computation for Modular Exponentiation Based on Replicated Secret Sharing

    Kazuma OHARA  Yohei WATANABE  Mitsugu IWAMOTO  Kazuo OHTA  

     
    PAPER-Cryptography and Information Security

      Vol:
    E102-A No:9
      Page(s):
    1079-1090

    In recent years, multi-party computation (MPC) frameworks based on replicated secret sharing schemes (RSSS) have attracted the attention as a method to achieve high efficiency among known MPCs. However, the RSSS-based MPCs are still inefficient for several heavy computations like algebraic operations, as they require a large amount and number of communication proportional to the number of multiplications in the operations (which is not the case with other secret sharing-based MPCs). In this paper, we propose RSSS-based three-party computation protocols for modular exponentiation, which is one of the most popular algebraic operations, on the case where the base is public and the exponent is private. Our proposed schemes are simple and efficient in both of the asymptotic and practical sense. On the asymptotic efficiency, the proposed schemes require O(n)-bit communication and O(1) rounds,where n is the secret-value size, in the best setting, whereas the previous scheme requires O(n2)-bit communication and O(n) rounds. On the practical efficiency, we show the performance of our protocol by experiments on the scenario for distributed signatures, which is useful for secure key management on the distributed environment (e.g., distributed ledgers). As one of the cases, our implementation performs a modular exponentiation on a 3,072-bit discrete-log group and 256-bit exponent with roughly 300ms, which is an acceptable parameter for 128-bit security, even in the WAN setting.

  • STBC Based Decoders for Two-User Interference MIMO Channels

    Zhiqiang YI  Meilin HE  Peng PAN  Haiquan WANG  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Pubricized:
    2019/03/14
      Vol:
    E102-B No:9
      Page(s):
    1875-1884

    This paper analyzes the performance of various decoders in a two-user interference channel, and some improved decoders based on enhanced utilization of channel state information at the receiver side are presented. Further, new decoders, namely hierarchical constellation based decoders, are proposed. Simulations show that the improved decoders and the proposed decoders have much better performance than existing decoders. Moreover, the proposed decoders have lower decoding complexity than the traditional maximum likelihood decoder.

1861-1880hit(18690hit)