The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ATI(18690hit)

1881-1900hit(18690hit)

  • Enhancing Multipath TCP Initialization with SYN Duplication

    Kien NGUYEN  Mirza Golam KIBRIA  Kentaro ISHIZU  Fumihide KOJIMA  

     
    PAPER-Network

      Pubricized:
    2019/03/18
      Vol:
    E102-B No:9
      Page(s):
    1904-1913

    A Multipath TCP (MPTCP) connection uses multiple subflows (i.e., TCP flows), each of which traverses over a wireless link, enabling throughput and resilience enhancements in mobile wireless networks. However, to achieve the benefits, the subflows are necessarily initialized (i.e., must complete TCP handshakes) and sequentially attached to the MPTCP connection. In the standard (MPTCPST), MPTCP initialization raises several problems. First, the TCP handshake of opening subflow is generally associated with a predetermined network. That leads to degraded MPTCP performance when the network does not have the lowest latency among available ones. Second, the first subflow's initialization needs to be successful before the next subflow can commence its attempt to achieve initialization. Therefore, the resilience of multiple paths fails when the first initialization fails. This paper proposes a novel method for MPTCP initialization, namely MPTCPSD (i.e., MPTCP with SYN duplication), which can solve the problems. MPTCPSD duplicates the first SYN and attempts to establish TCP handshakes for all subflows simultaneously, hence inherently improves the loss-resiliency. The subflow that achieves initialization first, is selected as the first subflow, consequently solving the first problem. We have implemented and extensively evaluated MPTCPSD in comparison to MPTCPST. In an emulated network, the evaluation results show that MPTCPSD has better performance that MPTCPST with the scenarios of medium and short flows. Moreover, MPTCPSD outperforms MPTCPST in the case that the opening subflow fails. Moreover, a real network evaluation proves that MPTCPSD efficiently selects the lowest delay network among three ones for the first subflow regardless of the preconfigured default network. Additionally, we propose and implement a security feature for MPTCPSD, that prevents the malicious subflow from being established by a third party.

  • Latent Variable Based Anomaly Detection in Network System Logs

    Kazuki OTOMO  Satoru KOBAYASHI  Kensuke FUKUDA  Hiroshi ESAKI  

     
    PAPER-Network Operation Support

      Pubricized:
    2019/06/07
      Vol:
    E102-D No:9
      Page(s):
    1644-1652

    System logs are useful to understand the status of and detect faults in large scale networks. However, due to their diversity and volume of these logs, log analysis requires much time and effort. In this paper, we propose a log event anomaly detection method for large-scale networks without pre-processing and feature extraction. The key idea is to embed a large amount of diverse data into hidden states by using latent variables. We evaluate our method with 12 months of system logs obtained from a nation-wide academic network in Japan. Through comparisons with Kleinberg's univariate burst detection and a traditional multivariate analysis (i.e., PCA), we demonstrate that our proposed method achieves 14.5% higher recall and 3% higher precision than PCA. A case study shows detected anomalies are effective information for troubleshooting of network system faults.

  • A Method for Smartphone Theft Prevention When the Owner Dozes Off Open Access

    Kouhei NAGATA  Yoshiaki SEKI  

     
    LETTER-Physical Security

      Pubricized:
    2019/06/04
      Vol:
    E102-D No:9
      Page(s):
    1686-1688

    We propose a method for preventing smartphone theft when the owner dozes off. The owner of the smartphone wears a wristwatch type device that has an acceleration sensor and a vibration mode. This device detects when the owner dozes off. When the acceleration sensor in the smartphone detects an accident while dozing, the device vibrates. We implemented this function and tested its usefulness.

  • Cross-VM Cache Timing Attacks on Virtualized Network Functions

    Youngjoo SHIN  

     
    LETTER-Information Network

      Pubricized:
    2019/05/27
      Vol:
    E102-D No:9
      Page(s):
    1874-1877

    Network function virtualization (NFV) achieves the flexibility of network service provisioning by using virtualization technology. However, NFV is exposed to a serious security threat known as cross-VM cache timing attacks. In this letter, we look into real security impacts on network virtualization. Specifically, we present two kinds of practical cache timing attacks on virtualized firewalls and routers. We also propose some countermeasures to mitigate such attacks on virtualized network functions.

  • Calibration of Turntable Based 3D Scanning Systems

    Duhu MAN  Mark W. JONES  Danrong LI  Honglong ZHANG  Zhan SONG  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2019/05/30
      Vol:
    E102-D No:9
      Page(s):
    1833-1841

    The consistent alignment of point clouds obtained from multiple scanning positions is a crucial step for many 3D modeling systems. This is especially true for environment modeling. In order to observe the full scene, a common approach is to rotate the scanning device around a rotation axis using a turntable. The final alignment of each frame data can be computed from the position and orientation of the rotation axis. However, in practice, the precise mounting of scanning devices is impossible. It is hard to locate the vertical support of the turntable and rotation axis on a common line, particularly for lower cost consumer hardware. Therefore the calibration of the rotation axis of the turntable is an important step for the 3D reconstruction. In this paper we propose a novel calibration method for the rotation axis of the turntable. With the proposed rotation axis calibration method, multiple 3D profiles of the target scene can be aligned precisely. In the experiments, three different evaluation approaches are used to evaluate the calibration accuracy of the rotation axis. The experimental results show that the proposed rotation axis calibration method can achieve a high accuracy.

  • On Scaling Property of Information-Centric Networking

    Ryo NAKAMURA  Hiroyuki OHSAKI  

     
    PAPER

      Pubricized:
    2019/03/22
      Vol:
    E102-B No:9
      Page(s):
    1804-1812

    In this paper, we focus on a large-scale ICN (Information-Centric Networking), and reveal the scaling property of ICN. Because of in-network content caching, ICN is a sort of cache networks and expected to be a promising architecture for replacing future Internet. To realize a global-scale (e.g., Internet-scale) ICN, it is crucial to understand the fundamental properties of such large-scale cache networks. However, the scaling property of ICN has not been well understood due to the lack of theoretical foundations and analysis methodologies. For answering research questions regarding the scaling property of ICN, we derive the cache hit probability at each router, the average content delivery delay of each entity, and the average content delivery delay of all entities over a content distribution tree comprised of a single repository (i.e., content provider), multiple routers, and multiple entities (i.e., content consumers). Through several numerical examples, we investigate the effect of the topology and the size of the content distribution tree and the cache size at routers on the average content delivery delay of all entities. Our findings include that the average content delivery delay of ICNs converges to a constant value if the cache size of routers are not small, which implies high scalability of ICNs, and that even when the network size would grow indefinitely, the average content delivery delay is upper-bounded by a constant value if routers in the network are provided with a fair amount of content caches.

  • Smart Ambulance Approach Alarm System Using Smartphone

    Toru KOBAYASHI  Fukuyoshi KIMURA  Tetsuo IMAI  Kenichi ARAI  

     
    LETTER-Notification System

      Pubricized:
    2019/06/21
      Vol:
    E102-D No:9
      Page(s):
    1689-1692

    In order to operate an ambulance efficiently, we developed a Smart Ambulance Approach Alarm System using smartphone, by notifying the approach of an ambulance to other vehicles on public roads. The position information of ambulances has not been opened in view of development costs and privacy protection. Therefore, our study opens the position information inexpensively by loading commodity smartphones, not special devices, into ambulances. The position information is made to be open as minimum necessary information by our developed cloud server application, considering dynamic state of other vehicles on public roads and privacy of ambulance service users. We tested the functional efficiency of this system by the demonstration experiment on public roads.

  • Two-Level Named Packet Forwarding for Enhancing the Performance of Virtualized ICN Router

    Kazuaki UEDA  Kenji YOKOTA  Jun KURIHARA  Atsushi TAGAMI  

     
    PAPER

      Pubricized:
    2019/03/22
      Vol:
    E102-B No:9
      Page(s):
    1813-1821

    Information-Centric Networking (ICN) can offer rich functionalities to the network, e.g, in-network caching, and name-based forwarding. Incremental deployment of ICN is a key challenge that enable smooth migration from current IP network to ICN. We can say that Network Function Virtualization (NFV) must be one of the key technologies to achieve this deployment because of its flexibility to support new network functions. However, when we consider the ICN deployment with NFV, there exist two performance issues, processing delay of name-based forwarding and computational overhead of virtual machine. In this paper we proposed a NFV infrastructure-assisted ICN packet forwarding by integrating the name look-up to the Open vSwitch. The contributions are twofold: 1) First, we provide the novel name look-up scheme that can forward ICN packets without costly longest prefix match searching. 2) Second, we design the ICN packet forwarding scheme that integrates the partial name look-up into the virtualization infrastructure to mitigate computation overhead.

  • APS: Audience Presentation System Using Mobile Devices Open Access

    Haeyoung LEE  

     
    LETTER-Educational Technology

      Pubricized:
    2019/06/04
      Vol:
    E102-D No:9
      Page(s):
    1887-1889

    It is not easy for a student to present a question or comment to the lecturer and other students in large classes. This paper introduces a new audience presentation system (APS), which creates slide presentations of students' mobile responses in the classroom. Experimental surveys demonstrate the utility of this APS for classroom interactivity.

  • Frequency-Domain EMI Simulation of Power Electronic Converter with Voltage-Source and Current-Source Noise Models

    Keita TAKAHASHI  Takaaki IBUCHI  Tsuyoshi FUNAKI  

     
    PAPER-Energy in Electronics Communications

      Pubricized:
    2019/03/14
      Vol:
    E102-B No:9
      Page(s):
    1853-1861

    The electromagnetic interference (EMI) generated by power electronic converters is largely influenced by parasitic inductances and capacitances of the converter. One of the most popular EMI simulation methods that can take account of the parasitic parameters is the three-dimensional electromagnetic simulation by finite element method (FEM). A noise-source model should be given in the frequency domain in comprehensive FEM simulations. However, the internal impedance of the noise source is static in the frequency domain, whereas the transient switching of a power semiconductor changes its internal resistance in the time domain. In this paper, we propose the use of a voltage-source noise model and a current-source noise model to simulate EMI noise with the two components of voltage-dependent noise and current-dependent noise in the frequency domain. In order to simulate voltage-dependent EMI noise, we model the power semiconductor that is turning on by a voltage source, whose internal impedance is low. The voltage-source noise is proportional to the amplitude of the voltage. In order to simulate current-dependent EMI noise, we model the power semiconductor that is turning off by a current source, whose internal impedance is large. The current-source noise is proportional to the amplitude of the current. The measured and simulated conducted EMI agreed very well.

  • Multi-Party Computation for Modular Exponentiation Based on Replicated Secret Sharing

    Kazuma OHARA  Yohei WATANABE  Mitsugu IWAMOTO  Kazuo OHTA  

     
    PAPER-Cryptography and Information Security

      Vol:
    E102-A No:9
      Page(s):
    1079-1090

    In recent years, multi-party computation (MPC) frameworks based on replicated secret sharing schemes (RSSS) have attracted the attention as a method to achieve high efficiency among known MPCs. However, the RSSS-based MPCs are still inefficient for several heavy computations like algebraic operations, as they require a large amount and number of communication proportional to the number of multiplications in the operations (which is not the case with other secret sharing-based MPCs). In this paper, we propose RSSS-based three-party computation protocols for modular exponentiation, which is one of the most popular algebraic operations, on the case where the base is public and the exponent is private. Our proposed schemes are simple and efficient in both of the asymptotic and practical sense. On the asymptotic efficiency, the proposed schemes require O(n)-bit communication and O(1) rounds,where n is the secret-value size, in the best setting, whereas the previous scheme requires O(n2)-bit communication and O(n) rounds. On the practical efficiency, we show the performance of our protocol by experiments on the scenario for distributed signatures, which is useful for secure key management on the distributed environment (e.g., distributed ledgers). As one of the cases, our implementation performs a modular exponentiation on a 3,072-bit discrete-log group and 256-bit exponent with roughly 300ms, which is an acceptable parameter for 128-bit security, even in the WAN setting.

  • Acute Constraints in Straight-Line Drawings of Planar Graphs

    Akane SETO  Aleksandar SHURBEVSKI  Hiroshi NAGAMOCHI  Peter EADES  

     
    PAPER-Graph algorithms

      Vol:
    E102-A No:9
      Page(s):
    994-1001

    Recent research on graph drawing focuses on Right-Angle-Crossing (RAC) drawings of 1-plane graphs, where each edge is drawn as a straight line and two crossing edges only intersect at right angles. We give a transformation from a restricted case of the RAC drawing problem to a problem of finding a straight-line drawing of a maximal plane graph where some angles are required to be acute. For a restricted version of the latter problem, we show necessary and sufficient conditions for such a drawing to exist, and design an O(n2)-time algorithm that given an n-vertex plane graph produces a desired drawing of the graph or reports that none exists.

  • An Approximation Algorithm for the Maximum Induced Matching Problem on C5-Free Regular Graphs

    Yuichi ASAHIRO  Guohui LIN  Zhilong LIU  Eiji MIYANO  

     
    PAPER-Optimization

      Vol:
    E102-A No:9
      Page(s):
    1142-1149

    In this paper, we investigate the maximum induced matching problem (MaxIM) on C5-free d-regular graphs. The previously known best approximation ratio for MaxIM on C5-free d-regular graphs is $left( rac{3d}{4}- rac{1}{8}+ rac{3}{16d-8} ight)$. In this paper, we design a $left( rac{2d}{3}+ rac{1}{3} ight)$-approximation algorithm, whose approximation ratio is strictly smaller/better than the previous one when d≥6.

  • Vision Based Nighttime Vehicle Detection Using Adaptive Threshold and Multi-Class Classification

    Yuta SAKAGAWA  Kosuke NAKAJIMA  Gosuke OHASHI  

     
    PAPER

      Vol:
    E102-A No:9
      Page(s):
    1235-1245

    We propose a method that detects vehicles from in-vehicle monocular camera images captured during nighttime driving. Detecting vehicles from their shape is difficult at night; however, many vehicle detection methods focusing on light have been proposed. We detect bright spots by appropriate binarization based on the characteristics of vehicle lights such as brightness and color. Also, as the detected bright spots include lights other than vehicles, we need to distinguish the vehicle lights from other bright spots. Therefore, the bright spots were distinguished using Random Forest, a multiclass classification machine-learning algorithm. The features of bright spots not associated with vehicles were effectively utilized in the vehicle detection in our proposed method. More precisely vehicle detection is performed by giving weights to the results of the Random Forest based on the features of vehicle bright spots and the features of bright spots not related to the vehicle. Our proposed method was applied to nighttime images and confirmed effectiveness.

  • Upcoming Mood Prediction Using Public Online Social Networks Data: Analysis over Cyber-Social-Physical Dimension

    Chaima DHAHRI  Kazunori MATSUMOTO  Keiichiro HOASHI  

     
    PAPER-Emotional Information Processing

      Pubricized:
    2019/06/21
      Vol:
    E102-D No:9
      Page(s):
    1625-1634

    Upcoming mood prediction plays an important role in different topics such as bipolar depression disorder in psychology and quality-of-life and recommendations on health-related quality of life research. The mood in this study is defined as the general emotional state of a user. In contrast to emotions which is more specific and varying within a day, the mood is described as having either a positive or negative valence[1]. We propose an autonomous system that predicts the upcoming user mood based on their online activities over cyber, social and physical spaces without using extra-devices and sensors. Recently, many researchers have relied on online social networks (OSNs) to detect user mood. However, all the existing works focused on inferring the current mood and only few works have focused on predicting the upcoming mood. For this reason, we define a new goal of predicting the upcoming mood. We, first, collected ground truth data during two months from 383 subjects. Then, we studied the correlation between extracted features and user's mood. Finally, we used these features to train two predictive systems: generalized and personalized. The results suggest a statistically significant correlation between tomorrow's mood and today's activities on OSNs, which can be used to develop a decent predictive system with an average accuracy of 70% and a recall of 75% for the correlated users. This performance was increased to an average accuracy of 79% and a recall of 80% for active users who have more than 30 days of history data. Moreover, we showed that, for non-active users, referring to a generalized system can be a solution to compensate the lack of data at the early stage of the system, but when enough data for each user is available, a personalized system is used to individually predict the upcoming mood.

  • A Fully-Connected Ising Model Embedding Method and Its Evaluation for CMOS Annealing Machines

    Daisuke OKU  Kotaro TERADA  Masato HAYASHI  Masanao YAMAOKA  Shu TANAKA  Nozomu TOGAWA  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2019/06/10
      Vol:
    E102-D No:9
      Page(s):
    1696-1706

    Combinatorial optimization problems with a large solution space are difficult to solve just using von Neumann computers. Ising machines or annealing machines have been developed to tackle these problems as a promising Non-von Neumann computer. In order to use these annealing machines, every combinatorial optimization problem is mapped onto the physical Ising model, which consists of spins, interactions between them, and their external magnetic fields. Then the annealing machines operate so as to search the ground state of the physical Ising model, which corresponds to the optimal solution of the original combinatorial optimization problem. A combinatorial optimization problem can be firstly described by an ideal fully-connected Ising model but it is very hard to embed it onto the physical Ising model topology of a particular annealing machine, which causes one of the largest issues in annealing machines. In this paper, we propose a fully-connected Ising model embedding method targeting for CMOS annealing machine. The key idea is that the proposed method replicates every logical spin in a fully-connected Ising model and embeds each logical spin onto the physical spins with the same chain length. Experimental results through an actual combinatorial problem show that the proposed method obtains spin embeddings superior to the conventional de facto standard method, in terms of the embedding time and the probability of obtaining a feasible solution.

  • A Packet Classification Method via Cascaded Circular-Run-Based Trie

    Takashi HARADA  Yuki ISHIKAWA  Ken TANAKA  Kenji MIKAWA  

     
    PAPER-Classification

      Vol:
    E102-A No:9
      Page(s):
    1171-1178

    The packet classification problem to determine the behavior of incoming packets at the network devices. The processing latency of packet classification by linear search is proportional to the number of classification rules. To limit the latency caused by classification to a certain level, we should develop a classification algorithm that classifies packets in a time independent of the number of classification rules. Arbitrary (including noncontiguous) bitmask rules are efficiently expressive for controlling higher layer communication, achiving access control lists, Quality of Service and so on. In this paper, we propose a classification algorithm based on run-based trie [1] according to arbitrary bitmask rules. The space complexity of proposed algorithm is in linear in the size of a rule list. The time complexity except for construction of that can be regarded as constant which is independent the number of rules. Experimental results using a packet classification algorithm benchmark [2] show that our method classifies packets in constant time independent of the number of rules.

  • Physical Cell ID Detection Probabilities Using Frequency Domain PVS Transmit Diversity for NB-IoT Radio Interface

    Aya SHIMURA  Mamoru SAWAHASHI  Satoshi NAGATA  Yoshihisa KISHIYAMA  

     
    PAPER

      Pubricized:
    2019/02/20
      Vol:
    E102-B No:8
      Page(s):
    1477-1489

    This paper proposes frequency domain precoding vector switching (PVS) transmit diversity for synchronization signals to achieve fast physical cell identity (PCID) detection for the narrowband (NB)-Internet-of-Things (IoT) radio interface. More specifically, we propose localized and distributed frequency domain PVS transmit diversity schemes for the narrowband primary synchronization signal (NPSS) and narrowband secondary synchronization signal (NSSS), and NPSS and NSSS detection methods including a frequency offset estimation method suitable for frequency domain PVS transmit diversity at the receiver in a set of user equipment (UE). We conduct link-level simulations to compare the detection probabilities of NPSS and NSSS, i.e., PCID using the proposed frequency domain PVS transmit diversity schemes, to those using the conventional time domain PVS transmit diversity scheme. The results show that both the distributed and localized frequency domain PVS transmit diversity schemes achieve a PCID detection probability almost identical to that of the time domain PVS transmit diversity scheme when the effect of the frequency offset due to the frequency error of the UE temperature compensated crystal oscillator (TCXO) is not considered. We also show that for a maximum frequency offset of less than approximately 8 kHz, localized PVS transmit diversity achieves almost the same PCID detection probability. It also achieves a higher PCID detection probability than one-antenna transmission although it is degraded compared to the time domain PVS transmit diversity when the maximum frequency offset is greater than approximately 10 kHz.

  • Outdoor Experiments on Long-Range and Mobile Communications Using 39-GHz Band for 5G and Beyond

    Masashi IWABUCHI  Anass BENJEBBOUR  Yoshihisa KISHIYAMA  Guangmei REN  Chen TANG  Tingjian TIAN  Liang GU  Yang CUI  Terufumi TAKADA  

     
    PAPER

      Pubricized:
    2019/02/20
      Vol:
    E102-B No:8
      Page(s):
    1437-1446

    This paper presents results of outdoor experiments conducted in the 39-GHz band. In particular, assuming mobile communications such as the fifth generation mobile communications (5G) and beyond, we focus on achieving 1Gbit/s or greater throughput at transmission distances exceeding 1km in the experiments. In order to enhance the data rate and capacity, the use of higher frequency bands above 6GHz for mobile communications is a new and important technical challenge for 5G and beyond. To extend further the benefits of higher frequency bands to various scenarios, it is important to enable higher frequency bands to basically match the coverage levels of existing low frequency bands. Moreover, mobility is important in mobile communications. Therefore, we assume the 39-GHz band as a candidate frequency for 5G and beyond and prepare experimental equipment that utilizes lens antenna and beam tracking technologies. In the experiments, we achieve the throughput values of 2.14Gbit/s at the transmission distance of 1850m and 1.58Gbit/s at 20-km/h mobility. Furthermore, we show the possibility of achieving high throughput even under non-line-of-sight conditions. These experimental results contribute to clarifying the potential for the 39-GHz band to support gigabit-per-second class data rates while still providing coverage and supporting mobility over a coverage area with distance greater than 1km.

  • From Homogeneous to Heterogeneous: An Analytical Model for IEEE 1901 Power Line Communication Networks in Unsaturated Conditions

    Sheng HAO  Huyin ZHANG  

     
    PAPER-Network

      Pubricized:
    2019/02/20
      Vol:
    E102-B No:8
      Page(s):
    1636-1648

    Power line communication (PLC) networks play an important role in home networks and in next generation hybrid networks, which provide higher data rates (Gbps) and easier connectivity. The standard medium access control (MAC) protocol of PLC networks, IEEE 1901, uses a special carrier sense multiple access with collision avoidance (CSMA/CA) mechanism, in which the deferral counter technology is introduced to avoid unnecessary collisions. Although PLC networks have achieved great commercial success, MAC layer analysis for IEEE 1901 PLC networks received limited attention. Until now, a few studies used renewal theory and strong law of large number (SLLN) to analyze the MAC performance of IEEE 1901 protocol. These studies focus on saturated conditions and neglect the impacts of buffer size and traffic rate. Additionally, they are valid only for homogeneous traffic. Motivated by these limitations, we develop a unified and scalable analytical model for IEEE 1901 protocol in unsaturated conditions, which comprehensively considers the impacts of traffic rate, buffer size, and traffic types (homogeneous or heterogeneous traffic). In the modeling process, a multi-layer discrete Markov chain model is constructed to depict the basic working principle of IEEE 1901 protocol. The queueing process of the station buffer is captured by using Queueing theory. Furthermore, we present a detailed analysis for IEEE 1901 protocol under heterogeneous traffic conditions. Finally, we conduct extensive simulations to verify the analytical model and evaluate the MAC performance of IEEE 1901 protocol in PLC networks.

1881-1900hit(18690hit)