The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ATI(18690hit)

2941-2960hit(18690hit)

  • Pixel-Wise Interframe Prediction based on Dense Three-Dimensional Motion Estimation for Depth Map Coding

    Shota KASAI  Yusuke KAMEDA  Tomokazu ISHIKAWA  Ichiro MATSUDA  Susumu ITOH  

     
    LETTER

      Pubricized:
    2017/06/14
      Vol:
    E100-D No:9
      Page(s):
    2039-2043

    We propose a method of interframe prediction in depth map coding that uses pixel-wise 3D motion estimated from encoded textures and depth maps. By using the 3D motion, an approximation of the depth map frame to be encoded is generated and used as a reference frame of block-wise motion compensation.

  • Sheared EPI Analysis for Disparity Estimation from Light Fields

    Takahiro SUZUKI  Keita TAKAHASHI  Toshiaki FUJII  

     
    PAPER

      Pubricized:
    2017/06/14
      Vol:
    E100-D No:9
      Page(s):
    1984-1993

    Structure tensor analysis on epipolar plane images (EPIs) is a successful approach to estimate disparity from a light field, i.e. a dense set of multi-view images. However, the disparity range allowable for the light field is limited because the estimation becomes less accurate as the range of disparities become larger. To overcome this limitation, we developed a new method called sheared EPI analysis, where EPIs are sheared before the structure tensor analysis. The results of analysis obtained with different shear values are integrated into a final disparity map through a smoothing process, which is the key idea of our method. In this paper, we closely investigate the performance of sheared EPI analysis and demonstrate the effectiveness of the smoothing process by extensively evaluating the proposed method with 15 datasets that have large disparity ranges.

  • A Low Capture Power Test Generation Method Based on Capture Safe Test Vector Manipulation

    Toshinori HOSOKAWA  Atsushi HIRAI  Yukari YAMAUCHI  Masayuki ARAI  

     
    PAPER-Dependable Computing

      Pubricized:
    2017/06/06
      Vol:
    E100-D No:9
      Page(s):
    2118-2125

    In at-speed scan testing, capture power is a serious problem because the high power dissipation that can occur when the response for a test vector is captured by flip-flops results in excessive voltage drops, known as IR-drops, which may cause significant capture-induced yield loss. In low capture power test generation, the test vectors that violate capture power constraints in an initial test set are defined as capture-unsafe test vectors, while faults that are detected solely by capture-unsafe test vectors are defined as unsafe faults. It is necessary to regenerate the test vectors used to detect unsafe faults in order to prevent unnecessary yield losses. In this paper, we propose a new low capture power test generation method based on fault simulation that uses capture-safe test vectors in an initial test set. Experimental results show that the use of this method reduces the number of unsafe faults by 94% while requiring just 18% more additional test vectors on average, and while requiring less test generation time compared with the conventional low capture power test generation method.

  • A Compact Tree Representation of an Antidictionary

    Takahiro OTA  Hiroyoshi MORITA  

     
    PAPER-Information Theory

      Vol:
    E100-A No:9
      Page(s):
    1973-1984

    In both theoretical analysis and practical use for an antidictionary coding algorithm, an important problem is how to encode an antidictionary of an input source. This paper presents a proposal for a compact tree representation of an antidictionary built from a circular string for an input source. We use a technique for encoding a tree in the compression via substring enumeration to encode a tree representation of the antidictionary. Moreover, we propose a new two-pass universal antidictionary coding algorithm by means of the proposal tree representation. We prove that the proposed algorithm is asymptotic optimal for a stationary ergodic source.

  • Neighbor-Interactive Bee Colony for Problems with Local Structures

    Phuc Nguyen HONG  Chang Wook AHN  Jaehoon (Paul) JEONG  

     
    LETTER-Numerical Analysis and Optimization

      Vol:
    E100-A No:9
      Page(s):
    2034-2037

    In this letter, we integrate domain information into the original artificial bee colony algorithm to create a novel, neighbor-interactive bee colony algorithm. We use the Hamming distance measure to compute variable dependency between two binary variables and employ the Gini correlation coefficient to compute variable relation between integer variables. The proposed optimization method was evaluated by minimizing binary Ising models, integer Potts models, and trapped functions. Experimental results show that the proposed method outperformed the traditional artificial bee colony and other meta-heuristics in all the testing cases.

  • Automatic Optic Disc Boundary Extraction Based on Saliency Object Detection and Modified Local Intensity Clustering Model in Retinal Images

    Wei ZHOU  Chengdong WU  Yuan GAO  Xiaosheng YU  

     
    LETTER-Image

      Vol:
    E100-A No:9
      Page(s):
    2069-2072

    Accurate optic disc localization and segmentation are two main steps when designing automated screening systems for diabetic retinopathy. In this paper, a novel optic disc detection approach based on saliency object detection and modified local intensity clustering model is proposed. It consists of two stages: in the first stage, the saliency detection technique is introduced to the enhanced retinal image with the aim of locating the optic disc. In the second stage, the optic disc boundary is extracted by the modified Local Intensity Clustering (LIC) model with oval-shaped constrain. The performance of our proposed approach is tested on the public DIARETDB1 database. Compared to the state-of-the-art approaches, the experimental results show the advantages and effectiveness of the proposed approach.

  • Commutation Phenomena and Brush Wear of DC Motor at High Speed Rotation

    Masayuki ISATO  Koichiro SAWA  Takahiro UENO  

     
    PAPER

      Vol:
    E100-C No:9
      Page(s):
    716-722

    Many DC commutator motors are widely used in automobiles. In recent years, as compact and high output DC motors have been developed due to advanced technology, the faster the rotational speed is required and the commutation arc causes a high rate of wear/erosion of brush and commutator. Therefore, it is important how the motor speed influences commutation phenomena such as arc duration, residual current and erosion and wear of commutator and brush in order to achieve high reliability and extensive lifespan. In this paper waveforms of commutation voltage and current are measured at the rotation speed of 1000 to 5000min-1and the relation between rotation speed and arc duration / residual current is obtained. In addition long term tests are carried out at the rotation speed of 1000 to 5000min-1 the change of arc duration and effective commutation period is examined during the test of 20hours. Further, brush wear is evaluated by the difference of brush length between before and after test. Consequently, it can be made clear that as the speed increases, the effective commutation period decreases and the arc duration is almost same at the speed up to 3000min-1 and is around 42µsec.

  • Efficient Fault-Aware Routing for Wireless Sensor Networks

    Jaekeun YUN  Daehee KIM  Sunshin AN  

     
    PAPER-Mobile Information Network and Personal Communications

      Vol:
    E100-A No:9
      Page(s):
    1985-1992

    Since the sensor nodes are subject to faults due to the highly-constrained resources and hostile deployment environments, fault management in wireless sensor networks (WSNs) is essential to guarantee the proper operation of networks, especially routing. In contrast to existing fault management methods which mainly aim to be tolerant to faults without considering the fault type, we propose a novel efficient fault-aware routing method where faults are classified and dealt with accordingly. More specifically, we first identify each fault and then try to set up the new routing path according to the fault type. Our proposed method can be easily integrated with any kind of existing routing method. We show that our proposed method outperforms AODV, REAR, and GPSR, which are the representative works of single-path routing, multipath routing and location based routing, in terms of energy efficiency and data delivery ratio.

  • Frontier-Based Search for Enumerating All Constrained Subgraphs with Compressed Representation

    Jun KAWAHARA  Takeru INOUE  Hiroaki IWASHITA  Shin-ichi MINATO  

     
    PAPER

      Vol:
    E100-A No:9
      Page(s):
    1773-1784

    For subgraph enumeration problems, very efficient algorithms have been proposed whose time complexities are far smaller than the number of subgraphs. Although the number of subgraphs can exponentially increase with the input graph size, these algorithms exploit compressed representations to output and maintain enumerated subgraphs compactly so as to reduce the time and space complexities. However, they are designed for enumerating only some specific types of subgraphs, e.g., paths or trees. In this paper, we propose an algorithm framework, called the frontier-based search, which generalizes these specific algorithms without losing their efficiency. Our frontier-based search will be used to resolve various practical problems that include constrained subgraph enumeration.

  • Shift-Variant Blind Deconvolution Using a Field of Kernels

    Motoharu SONOGASHIRA  Masaaki IIYAMA  Michihiko MINOH  

     
    PAPER

      Pubricized:
    2017/06/14
      Vol:
    E100-D No:9
      Page(s):
    1971-1983

    Blind deconvolution (BD) is the problem of restoring sharp images from blurry images when convolution kernels are unknown. While it has a wide range of applications and has been extensively studied, traditional shift-invariant (SI) BD focuses on uniform blur caused by kernels that do not spatially vary. However, real blur caused by factors such as motion and defocus is often nonuniform and thus beyond the ability of SI BD. Although specialized methods exist for nonuniform blur, they can only handle specific blur types. Consequently, the applicability of BD for general blur remains limited. This paper proposes a shift-variant (SV) BD method that models nonuniform blur using a field of kernels that assigns a local kernel to each pixel, thereby allowing pixelwise variation. This concept is realized as a Bayesian model that involves SV convolution with the field of kernels and smoothing of the field for regularization. A variational-Bayesian inference algorithm is derived to jointly estimate a sharp latent image and a field of kernels from a blurry observed image. Owing to the flexibility of the field-of-kernels model, the proposed method can deal with a wider range of blur than previous approaches. Experiments using images with nonuniform blur demonstrate the effectiveness of the proposed SV BD method in comparison with previous SI and SV approaches.

  • Entropy-Based Sparse Trajectories Prediction Enhanced by Matrix Factorization

    Lei ZHANG  Qingfu FAN  Wen LI  Zhizhen LIANG  Guoxing ZHANG  Tongyang LUO  

     
    LETTER-Data Engineering, Web Information Systems

      Pubricized:
    2017/06/05
      Vol:
    E100-D No:9
      Page(s):
    2215-2218

    Existing moving object's trajectory prediction algorithms suffer from the data sparsity problem, which affects the accuracy of the trajectory prediction. Aiming to the problem, we present an Entropy-based Sparse Trajectories Prediction method enhanced by Matrix Factorization (ESTP-MF). Firstly, we do trajectory synthesis based on trajectory entropy and put synthesized trajectories into the trajectory space. It can resolve the sparse problem of trajectory data and make the new trajectory space more reliable. Secondly, under the new trajectory space, we introduce matrix factorization into Markov models to improve the sparse trajectory prediction. It uses matrix factorization to infer transition probabilities of the missing regions in terms of corresponding existing elements in the transition probability matrix. It aims to further solve the problem of data sparsity. Experiments with a real trajectory dataset show that ESTP-MF generally improves prediction accuracy by as much as 6% and 4% compared to the SubSyn algorithm and STP-EE algorithm respectively.

  • A Vibration Control Method of an Electrolarynx Based on Statistical F0 Pattern Prediction

    Kou TANAKA  Tomoki TODA  Satoshi NAKAMURA  

     
    PAPER-Rehabilitation Engineering and Assistive Technology

      Pubricized:
    2017/05/23
      Vol:
    E100-D No:9
      Page(s):
    2165-2173

    This paper presents a novel speaking aid system to help laryngectomees produce more naturally sounding electrolaryngeal (EL) speech. An electrolarynx is an external device to generate excitation signals, instead of vibration of the vocal folds. Although the conventional EL speech is quite intelligible, its naturalness suffers from the unnatural fundamental frequency (F0) patterns of the mechanically generated excitation signals. To improve the naturalness of EL speech, we have proposed EL speech enhancement methods using statistical F0 pattern prediction. In these methods, the original EL speech recorded by a microphone is presented from a loudspeaker after performing the speech enhancement. These methods are effective for some situation, such as telecommunication, but it is not suitable for face-to-face conversation because not only the enhanced EL speech but also the original EL speech is presented to listeners. In this paper, to develop an EL speech enhancement also effective for face-to-face conversation, we propose a method for directly controlling F0 patterns of the excitation signals to be generated from the electrolarynx using the statistical F0 prediction. To get an "actual feel” of the proposed system, we also implement a prototype system. By using the prototype system, we find latency issues caused by a real-time processing. To address these latency issues, we furthermore propose segmental continuous F0 pattern modeling and forthcoming F0 pattern modeling. With evaluations through simulation, we demonstrate that our proposed system is capable of effectively addressing the issues of latency and those of electrolarynx in term of the naturalness.

  • Color Transfer by Region Exploration and Navigation

    Somchai PHATTHANACHUANCHOM  Rawesak TANAWONGSUWAN  

     
    PAPER

      Pubricized:
    2017/06/14
      Vol:
    E100-D No:9
      Page(s):
    1962-1970

    Color transfer is a simple process to change a color tone in one image (source) to look like another image (target). In transferring colors between images, there are several issues needed to be considered including partial color transfer, trial-and-error, and multiple target color transfer. Our approach enables users to transfer colors partially and locally by letting users select their regions of interest from image segmentation. Since there are many ways that we can transfer colors from a set of target regions to a set of source regions, we introduce the region exploration and navigation approach where users can choose their preferred color tones to transfer one region at a time and gradually customize towards their desired results. The preferred color tones sometimes can come from more than one image; therefore our method is extended to allow users to select their preferred color tones from multiple images. Our experimental results have shown the flexibility of our approach to generate reasonable segmented regions of interest and to enable users to explore the possible results more conveniently.

  • Articulatory Modeling for Pronunciation Error Detection without Non-Native Training Data Based on DNN Transfer Learning

    Richeng DUAN  Tatsuya KAWAHARA  Masatake DANTSUJI  Jinsong ZHANG  

     
    PAPER-Speech and Hearing

      Pubricized:
    2017/05/26
      Vol:
    E100-D No:9
      Page(s):
    2174-2182

    Aiming at detecting pronunciation errors produced by second language learners and providing corrective feedbacks related with articulation, we address effective articulatory models based on deep neural network (DNN). Articulatory attributes are defined for manner and place of articulation. In order to efficiently train these models of non-native speech without such data, which is difficult to collect in a large scale, several transfer learning based modeling methods are explored. We first investigate three closely-related secondary tasks which aim at effective learning of DNN articulatory models. We also propose to exploit large speech corpora of native and target language to model inter-language phenomena. This kind of transfer learning can provide a better feature representation of non-native speech. Related task transfer and language transfer learning are further combined on the network level. Compared with the conventional DNN which is used as the baseline, all proposed methods improved the performance. In the native attribute recognition task, the network-level combination method reduced the recognition error rate by more than 10% relative for all articulatory attributes. The method was also applied to pronunciation error detection in Mandarin Chinese pronunciation learning by Japanese native speakers, and achieved the relative improvement up to 17.0% for detection accuracy and up to 19.9% for F-score, which is also better than the lattice-based combination.

  • Image Restoration of JPEG Encoded Images via Block Matching and Wiener Filtering

    Yutaka TAKAGI  Takanori FUJISAWA  Masaaki IKEHARA  

     
    PAPER-Image

      Vol:
    E100-A No:9
      Page(s):
    1993-2000

    In this paper, we propose a method for removing block noise which appears in JPEG (Joint Photographic Experts Group) encoded images. We iteratively perform the 3D wiener filtering and correction of the coefficients. In the wiener filtering, we perform the block matching for each patch in order to get the patches which have high similarities to the reference patch. After wiener filtering, the collected patches are returned to the places where they were and aggregated. We compare the performance of the proposed method to some conventional methods, and show that the proposed method has an excellent performance.

  • A Hybrid Approach via SRG and IDE for Volume Segmentation

    Li WANG  Xiaoan TANG  Junda ZHANG  Dongdong GUAN  

     
    LETTER-Computer Graphics

      Pubricized:
    2017/06/09
      Vol:
    E100-D No:9
      Page(s):
    2257-2260

    Volume segmentation is of great significances for feature visualization and feature extraction, essentially volume segmentation can be viewed as generalized cluster. This paper proposes a hybrid approach via symmetric region growing (SRG) and information diffusion estimation (IDE) for volume segmentation, the volume dataset is over-segmented to series of subsets by SRG and then subsets are clustered by K-Means basing on distance-metric derived from IDE, experiments illustrate superiority of the hybrid approach with better segmentation performance.

  • Low-Latency Low-Cost Architecture for Square and Cube Roots

    Jihyuck JO  In-Cheol PARK  

     
    PAPER-Digital Signal Processing

      Vol:
    E100-A No:9
      Page(s):
    1951-1955

    This paper presents a low-latency, low-cost architecture for computing square and cube roots in the fixed-point format. The proposed architecture is designed based on a non-iterative root calculation scheme to achieve fast computations. While previous non-iterative root calculators are restricted to a square-root operation due to the limitation of their mathematical property, the root computation is generalized in this paper to apply an approximation method to the non-iterative scheme. On top of that, a recurrent method is proposed to select parameters, which enables us to reduce the table size while keeping the maximum relative error value low. Consequently, the proposed root calculator can support both square and cube roots at the expense of small delay and low area overheads. This extension can be generalized to compute the nth roots, where n is a positive integer.

  • Optical Networking Paradigm: Past, Recent Trends and Future Directions Open Access

    Eiji OKI  Naoya WADA  Satoru OKAMOTO  Naoaki YAMANAKA  Ken-ichi SATO  

     
    INVITED SURVEY PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2017/03/22
      Vol:
    E100-B No:9
      Page(s):
    1564-1580

    This paper presents past and recent trends of optical networks and addresses the future directions. First, we describe path networks with the historical backgrounds and trends. path networks have advanced by using various multiplexing technologies. They include time-division multiplexing (TDM), asynchronous transfer mode (ATM), and wavelength-division multiplexing (WDM). ATM was later succeeded to multi-protocol label switching (MPLS). Second, we present generalized MPLS technologies (GMPLS). In GMPLS, the label concept of MPLS is extended to other labels used in TDM, WDM, and fiber networks. GMPLS enables network operators to serve networks deployed by different technologies with a common protocol suite of GMPLS. Third, we describe multi-layer traffic engineering and a path computation element (PCE). Multi-layer traffic engineering designs and controls networks considering resource usages of more than one layer. This leads to use network resources more efficiently than the single-layer traffic engineering adopted independently for each layer. PCE is defined as a network element that computes paths, which are used for traffic engineering. Then, we address software-defined networks, which put the designed network functions into the programmable data plane by way of the management plane. We describe the evaluation from GMPLS to software defined networking (SDN) and transport SDN. Fifth, we describe the advanced devices and switches for optical networks. Finally, we address advances in networking technologies and future directions on optical networking.

  • Effect of Hardness on Wear and Abrasion Resistance of Silver Plating on Copper Alloy

    Shigeru SAWADA  Song-Zhu KURE-CHU  Rie NAKAGAWA  Toru OGASAWARA  Hitoshi YASHIRO  Yasushi SAITOH  

     
    PAPER

      Vol:
    E100-C No:9
      Page(s):
    695-701

    This study is aimed at clarifying the mechanism of wear process for Ag plating. The samples of different hardness Ag plating on copper alloys were prepared as coupon and embossment specimens, which simulated terminal contacts. During the sliding test, the contact resistance and the friction coefficient versus sliding distance are measured. The surface observation and surface roughness of the Ag films after wear tests were investigated. As results, the hard Ag plating film (120 Hv) exhibited higher contact resistance comparing to the soft Ag plating film (80 Hv). The soft Ag film delivered wider wear trace on coupon specimens compared to the hard one. Moreover, the observation of tribofilms formed on the Ag films after wear tests suggested that a mixed-type of adhesive and abrasive wears occurred for both of soft and hard Ag films. Furthermore, the fretting corrosion resistance of Ag plating samples with different hardness was also investigated. As results, the wear resistance of hard Ag film was stronger than that of soft Ag film.

  • A Survey on Modeling of Human States in Communication Behavior Open Access

    Sumaru NIIDA  Sho TSUGAWA  Mutsumi SUGANUMA  Naoki WAKAMIYA  

     
    INVITED SURVEY PAPER-Network

      Pubricized:
    2017/03/22
      Vol:
    E100-B No:9
      Page(s):
    1538-1546

    The Technical Committee on Communication Behavior Engineering addresses the research question “How do we construct a communication network system that includes users?”. The growth in highly functional networks and terminals has brought about greater diversity in users' lifestyles and freed people from the restrictions of time and place. Under this situation, the similarities of human behavior cause traffic aggregation and generate new problems in terms of the stabilization of network service quality. This paper summarizes previous studies relevant to communication behavior from a multidisciplinary perspective and discusses the research approach adopted by the Technical Committee on Communication Behavior Engineering.

2941-2960hit(18690hit)